Estudios sobre el factor de crecimiento epidérmico (EGF). Expresión del receptor en el cáncer mamario humano.

A. Macías, R. Pérez, A. Lage
Instituto de Oncología y Radiobiología, MINSAP
La Habana, Cuba
Recibido el 3 de septiembre de 1984

RESUMEN
La capacidad de unión específica del 125I-factor de crecimiento epidérmico (EGF) fue estudiada en la fracción cruda de membrana de 95 carcinomas mamarios humanos. El 42% de las muestras mostraron sitios de unión saturables, específicos y de alta afinidad para el EGF. En 21% de los tumores nosotros fuimos capaces de demostrar alta capacidad de unión (cerca de 10 fmoles/mg de proteínas). Más aún, altos valores del receptor de EGF estuvieron asociados a un bajo contenido del receptor de estradiol (RE).

Estos estudios están relacionados con la definición de nuevos marcadores bioquímicos en el cáncer mamario humano.

SUMMARY
The capacity for specific binding of 125I-Epidermal Growth Factor (EGF) was studied in crude membrane fractions from 95 human breast carcinomas. Forty two percent of the samples showed saturable, high affinity, specific binding of EGF. In 21 percent of the tumors, we were able to demonstrate high (above 10 fmoles/mg of protein) binding capacity. Moreover, high EGF receptor values were associated with low estradiol-receptor content.

These studies are related to the definition of new biochemical markers in human breast cancer.

INTRODUCCION
Uno de los mayores avances terapéuticos en el tratamiento del cáncer mamario humano, ha sido la incorporación de la determinación de los receptores hormonales, con el propósito de lograr una mejor caracterización bioquímica individual del tumor (McGuire, 1978). Siendo el receptor de estrógeno (RE) el más estudiado hasta el presente, existe una buena cantidad
de estudios de seguimientos que muestran su valor pronóstico (Knigth et al., 1977; Hahnel et al., 1979; Furmanski et al., 1983; Pascual et al., 1983); también existen autores que plantean actualmente la significación pronóstica del receptor de progesterona (RPg) (Pichon et al., 1980; Macías et al., 1983).

El desarrollo de la tecnología de estudios in vitro del control de la proliferación en células superiores (Baserga et al., 1982) y de los métodos de separación de biomoléculas han permitido en la última década la identificación de un conjunto de polipéptidos que actúan como estimuladores de la proliferación celular mediante su interacción con receptores específicos de membrana, los llamados factores de crecimiento (Jiménez de Asua et al., 1980). Determinadas modificaciones tecnológicas (Savage y Cohen, 1972) han permitido la purificación de estas moléculas a homogeneidad y su obtención en escala de miligramos, lo cual abre la posibilidad para una evaluación más completa del rol de los factores de crecimiento en la proliferación de los tumores y sus posibilidades de utilización diagnóstica y terapéutica.

El tejido epitelial mamario, tanto normal como neoplásico, está sometido a una dependencia hormonal múltiple, y por tanto, se hace necesario un estudio bioquímico más detallado que permita un mejor conocimiento de los cambios que impone la heterogeneidad biológica de esta enfermedad. En la búsqueda de nuevos marcadores bioquímicos, hemos fijado nuestra atención en el receptor del factor de crecimiento epidérmico (EGF).

Ha sido demostrado que este factor de crecimiento promueve la proliferación del tejido epitelial mamario normal y neoplásico en roedores (Turkington et al., 1969). Su presencia es necesaria para el desarrollo lóbululo-alveolar de la glándula mamaria de ratón en cultivos de órganos (Tonelli et al., 1980) y también estimula el crecimiento de cultivos primarios y de algunas líneas celulares provenientes de tumores mamarios humanos y experimentales (Osborne et al., 1980). Se ha demostrado la presencia de sitios receptores para el EGF en líneas celulares establecidas a partir de tumores de mama humanos (Osborne et al., 1981; Imai et al., 1982).

Otros hallazgos recientes que relacionan el EGF con la transformación maligna son: la actividad de proteína quinasa que posee el complejo ligando-receptor, capaz de fosforilar en resto de tirosina, de forma análoga a las proteínas quinasas codificadas por algunos oncogenes virales, y la similitud reportada entre la secuencia primaria del receptor de EGF y de la proteína codificada por el oncogen viral v-erb-b (Cooper et al., 1982; Downward et al., 1984).

En el presente trabajo mostramos resultados que indican:
1. La existencia de sitios receptores medibles de alta afinidad para el EGF en la fracción cruda de membrana de tumores mamarios humanos.
2. La presencia de heterogeneidad en los tumores mamarios humanos con respecto a esta propiedad.
3. Que los tumores con alto contenido de receptor de EGF son generalmente receptores de estrógeno (RE) negativos, fenómeno observado también en líneas celulares establecidas a partir de tumores de mama humanos y en tumores espontáneos mamarios de ratón.

MATERIALES Y MÉTODOS

El factor de crecimiento epidérmico (EGF) fue purificado de las glándulas submaxilares de ratones machos tratados previamente con propionato de testosterona (10 mg dosis única, vía subcutánea), según el método descrito por Savage y Cohen (Savage y Cohen, 1972). El homogenado obtenido fue sometido a dos pasos de fraccionamiento por columna: cromatografía en Bio-Gel P10, utilizando la propiedad que posee esta molécula (EGF) de absorberse a pH
ácido a la matriz de poliacrilamida, y posteriormente el material obtenido se aplicó en una columna de DEAE-celulosa, eluyéndose la proteína absorbida a la matriz con un gradiente de 0,02-0,2 M de acetato de amonio pH 5,6. El EGF fue radioiodado por el método de la cloramina-T (Hunter et al., 1982). El Iodo-125 y el 2, 4, 6, 7, 3H-Estradiol fueron obtenidos comercialmente (Amershan).

Fraccionamiento del tejido de placenta humana

El tejido placentario (30 g) previa congelación en nitrógeno líquido se homogeneizó en 90 ml de tampón Tris-HCl 10 mM, pH 7,4 durante un minuto, utilizando un homogeneizador de cuchillas de alta velocidad (Polytron), realizándose todo el proceso en baño de hielo. El homogenado se centrifugó a 10 000 g durante 10 minutos a 0°C. El sobrenadante obtenido fue centrifugado a 100 000 g durante una hora. El sedimento (fracción cruda de membrana) fue guardado a -20°C hasta realizar la determinación del receptor de EGF.

Fraccionamiento del tejido tumoral

Se estudió el tejido mamario de 95 pacientes con diagnóstico histológicamente confirmado de carcinoma mamario. En esta muestra todas las pacientes fueron clasificadas como etapas I y II, según la clasificación TNM de la UICC (Harmes, 1978).

La muestra tumoral de aproximadamente 1 g, limpia de grasa y residuos de tejido necrótico y conector se congeló en nitrógeno líquido, después de colectada en el salón de operaciones. Posteriormente se pulverizó en baño de nitrógeno líquido y se homogeneizó en tampón Tris-HCl, 10 mM pH 7,4. EDTA 1 mM Mercaptopetanol 1 mM. El homogenado se centrifugó a 100 000 g durante 40 minutos a 0°C. El sobrenadante (Citosol) fue utilizado en la determinación del receptor de estrógeno y el sedimento fue resuspendido en tampón Tris-HCl 10 mM pH 7,4 y centrifugado a 100 000 g durante 10 minutos. El segundo sobrenadante fue centrifugado a 100 000 g durante 1 hora y el sedimento fue guardado a -20°C hasta realizar la determinación del receptor de EGF. Este esquema de obtención de la fracción cruda de membrana, aunque diferente a los procedimientos clásicos (De Duve et al., 1955) permitió la determinación simultánea del receptor citoplasmático de Estradiol y del receptor de membrana de EGF en la misma muestra de tejido tumoral.

Dosificación cuantitativa de ambos receptores (RE y R-EGF)

La determinación del receptor de estrógeno (RE) fue realizada utilizando la técnica de Carbón-Dextran recomendada por EORTC (EORTC, 1973), con modificaciones menores (Pascual et al., 1981).

La presencia de receptores de Estradiol en el citosol se midió a través de la unión específica del 2, 4, 6, 7, 3H Estradiol (Amersham, 99Ci/mMol) en una serie de 10 concentraciones desde 4×10^{-10} hasta 2×10^{-8} M, incluyéndose una serie paralela de tubos con exceso de estrógeno frío (Diethylstilbestrol 4×10^{-8} M) para determinar la unión inespecífica.

La dosificación del receptor de EGF se realizó de la siguiente manera: la fracción cruda de membrana (100 µl, con concentración de 100 µg de proteínas o más) fue incubada con aproximadamente 100 000 cpd de 125I-EGF (150-200 µCi/µg) en una serie de 9 concentraciones diferentes de EGF no marcado (0, 1, 3, 6, 9, 15, 39, 60 y 100 µg/ml concentraciones finales, la última fue incluida para estimar la unión no específica). El volumen total fue llevado a 500 µl
con tampón Tris-HCl 10 mM, pH 7,4, MgCl₂ 10 mM Albúmina de suero bovino (BSA) 0,1%. La muestra se incubó 1 hora, a temperatura ambiente y la reacción se detuvo añadiendo tampón frío Tris-HCl 10 mM, pH 7,4, MgCl₂, albúmina de suero bovino 0,1%. Después de centrifugar a 3000 g durante 30 minutos la radiactividad en el sedimento se determinó utilizando un contador gamma.

Dosificación del receptor de EGF en líneas celulares in vitro

Se realizó la determinación del receptor de EGF a diferentes líneas celulares conocidas, provenientes de tumores mamarios humanos. Estas fueron: MCF-7, MDA-MB-134, MDA-MB-157 y MDA-MB-468 (Engel y Young, 1978). Se sembraron 2 x 10⁵ células por pozo (en placas Costar de 24 pozos) y se dejó que alcanzaran la confluencia. Se aspiró el medio y se lavaron las monocapas celulares. Posteriormente se añadió tampón de unión (medio Mc Coy con 20 mM de Hapes, pH 7,6 y albúmina de suero bovino 1%; 200 µl por pozo, conteniendo el 125I-EGF (100 000 Cpm; 150-200 µCi/µG). La hormona no marcada se añadió (20 µl por pozo), utilizando las siguientes concentraciones finales: 0; 0,1; 0,2; 0,5; 1; 2; 5; 10; 20; 50; 1000 µg/ml; la última para estimar la unión inespecífica. Se realizó la incubación durante 1 hora, a temperatura ambiente. Se aspiró el medio de incubación y se lavaron 2 veces las monocapas con solución salina fosfato con CaCl₂ 1 mM y MgCl₂ 0,5 mM (PBS con Ca y Mg) a 0°C; se digirieron las células con hidróxido de sodio (NaOH 0,1 N) y se pasaron a tubos de ensayo contándose la radiactividad en un contador gamma.

Procesamiento de los datos

La cantidad de sitios receptores y la constante de disociación (Kd) aparente de la unión ligando-receptor se determinaron, ajustándose los datos experimentales a la ecuación de Scatchard (Scatchard et al., 1969).

La cantidad de proteínas se determinó por el método de Lowry (Lowry et al., 1951).

La significación estadística de la asociación entre el receptor de EGF y el contenido de receptores de estrógeno (RE), fue evaluada utilizando el test no paramétrico de correlación de rango de Kendall.

RESULTADOS

I. Características cinéticas del receptor del factor de crecimiento epidérmico (R-EGF) en la fracción cruda de membrana de placenta humana

El curso temporal de la unión 125I-EGF a los extractos crudos de membrana de placenta humana a temperatura ambiente, alcanza el nivel estacionario a los 60 minutos de incubación (figura 1A). El máximo de unión específica en presencia de hormona no marcada es estable al menos hasta 2 horas, por tanto entre 1 y 2 horas no es crítico el tiempo de incubación.

Esta unión específica del 125I-EGF a la fracción cruda de membrana de placenta humana, aumenta linealmente con la concentración de proteínas de extractos crudos de membrana en el ensayo (figura 1B). Es de destacar que la unión no específica es muy baja aun a altas concentraciones de proteínas de membrana, de manera que en el rango de 0,1-1 mg/ml la unión no específica prácticamente no aumenta por lo que tampoco es un elemento crítico. La curva
FIG. 1. Unión del 125I-EGF a membranas de placenta. La fracción cruda de membranas obtenidas de placenta humana se incubó a temperatura ambiente en presencia de 100 000 cpm de 125I-EGF. Después de sedimentar y lavar el sedimento, se contó la radiactividad total unida a la fracción de membrana (ordenadas). Para determinar la unión inespecífica se incluyó además en el ensayo 1000 ng/ml de EGF no radiactivo. En 1A la abscisa es tiempo de incubación en minutos y en 1B es la cantidad de proteínas de la fracción microsomal incluida en el ensayo e incubada 1 hora. Se indican por separado los valores de las tres réplicas de cada punto.

de concentración de 125I-EGF (figura 2) muestra que la unión es saturable, aunque los valores de la meseta de saturación deben comenzar a obtenerse altas concentraciones del radiotrazador, que conllevan al aumento de la unión no específica. En términos experimentales, se trabaja con curva de desplazamiento en que la saturación se alcanza con hormona no marcada. En la figura 3 se muestra una curva de desplazamiento de la unión de 125I-EGF a extractos crudos de membrana de placenta humana, por concentraciones crecientes de EGF no marcado. Nótese que este desplazamiento es específico, ya que otros péptidos como la insulina, aún a concentraciones mayores, no logra competir con el radiotrazador. De esta curva de desplazamiento, asumiendo que la radioiodación no modifica la afinidad de la hormona por su receptor, puede construirse una curva de saturación (figura 4A) cuyo ploteo de Scatchard (figura 4B) ajusta a una recta que define una constante de disociación (Kd) en el orden de 10^{-9} M.

En las condiciones experimentales utilizadas, la unión del 125I-EGF al extracto crudo de membrana de placenta humana parece como reversible, específica saturable y de alta afinidad, lo que define cinéticamente un receptor de membrana.
FIG. 2. Curva de concentración del ligando. La figura muestra la relación entre la radiactividad de 125I-EGF unida a la fracción de membrana de placenta (ordenada) y la concentración final de 125I-EGF en el ensayo (abscisa, cpm en 0,5 ml de volumen final). La curva de unión inspecifica se construye añadiendo en el ensayo además, EGF no radiactivo, 1000 ng/ml.

FIG. 3. Especificidad de la unión: Curvas de desplazamiento. La figura muestra la cantidad de radiactividad de 125I-EGF a fracción cruda de membrana de placenta (ordenada) en presencia de diferentes concentraciones de Insulina o EGF no radiactivos (abscisa).
FIG. 4. Cálculo de la constante de disociación. La figura muestra los resultados de un experimento de unión de 125I-EGF a fracción cruda de membrana a diferentes concentraciones del ligando. En 4A la radiactividad unida a la fracción de membrana (125I-EGF ligado) se indica en la ordenada, en función de la concentración de 125I-EGF en el ensayo abscisa, cpm en 0,5 ml. En 4B los datos se recalan de acuerdo al método de Scatchard, indicando en la ordenada el cociente entre la radiactividad ligada y la libre (L/NL) y en la abscisa la cantidad de 125I-EGF ligado en moles. La constante de disociación (Kd) se calcula a partir de la pendiente de la recta.

Dos elementos prácticos deben ser resaltados: primero los sedimentos de fracción cruda de membrana guardados a -20°C retienen su capacidad de unión de EGF durante más de un mes (tabla 1), por lo que la proteína receptora parece estable en estas condiciones. En segundo lugar, la dosificación del receptor de EGF debe realizarse en muestras que contengan más de 1 mg/ml de proteínas en la fracción cruda de membrana, al menos en nuestras condiciones experimentales (tabla 2), ya que bajas concentraciones de proteínas de membrana conllevan a una subestimación en la dosificación del receptor.

<table>
<thead>
<tr>
<th>Tabla 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNION ESPECIFICA DEL EGF A FRACCIONES DE MEMBRANA: EFECTO DEL TIEMPO DE ALMACENAMIENTO A -20°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tiempo (días)</th>
<th>Número de receptores (fmoles/mg)</th>
<th>K_d ($\times 10^{-9}$ M)</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimento 1</td>
<td>0</td>
<td>111</td>
<td>8,4</td>
</tr>
<tr>
<td>Experimento 2</td>
<td>3</td>
<td>128</td>
<td>3,2</td>
</tr>
<tr>
<td>Experimento 3</td>
<td>0</td>
<td>169</td>
<td>2,1</td>
</tr>
<tr>
<td>Experimento 4</td>
<td>36</td>
<td>103</td>
<td>0,91</td>
</tr>
</tbody>
</table>
Tabla 2
EFECTO DE LA CONCENTRACION DE PROTEINAS
SOBRE LA DETERMINACION DE RECEPTORES DE EGF

<table>
<thead>
<tr>
<th>Concentración de proteínas en la muestra (mg/ml)</th>
<th>ug/ml en el Test</th>
<th>Kd (x 10^{-9} M)</th>
<th>Número de receptores (fmoles/mg proteínas)</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,25</td>
<td>50</td>
<td>1,84</td>
<td>81,8</td>
<td>0,95</td>
</tr>
<tr>
<td>0,50</td>
<td>100</td>
<td>3,06</td>
<td>125,6</td>
<td>0,92</td>
</tr>
<tr>
<td>1,25</td>
<td>250</td>
<td>5,4</td>
<td>241,0</td>
<td>0,90</td>
</tr>
<tr>
<td>2,50</td>
<td>500</td>
<td>5,3</td>
<td>205,3</td>
<td>0,93</td>
</tr>
</tbody>
</table>

II. Expresión del receptor de EGF (R-EGF) en el cáncer mamario humano

Nosotros estudiamos la capacidad de unión específica de alta afinidad para el EGF de las fracciones crudas de membrana de 95 carcinomas mamarios humanos.

El 42% de las muestras de tumores mostraron sitios receptores de alta afinidad para el EGF. Los gráficos de Scatchard tópicos se muestran en la figura 5. Nótese la similitud en los valores

![Gráfico 5](image-url)

FIG. 5. Unión del \(^{125}\text{I}-\text{EGF}\) a fracciones de membrana de tumores mamarios humanos. La figura muestra los gráficos de Scatchard de la unión de \(^{125}\text{I}-\text{EGF}\) a las fracciones de membrana de tres tumores mamarios humanos diferentes. La ordenada es el cociente entre la radiactividad ligada y la libre (N/NL) y la abscisa es la radiactividad ligada en moles. Nótese la similitud en las constantes de disociación (Kd) a pesar de las diferencias en el contenido total de receptores.
de las constantes de disociación de los sitios receptores de los tumores con los obtenidos en placent a humana, e incluso entre estos mismos, a pesar de las diferencias en el número de sitios de unión. La distribución de los valores del receptor de EGF en la población tumoral es mostrada en la figura 6. La presencia de sitios receptores de alta afinidad estuvo en el rango de 1 hasta 64 fmoles/mg de proteínas (media aritmética: 17,3 fmoles/mg de proteínas; media geométrica: 11 fmoles/mg de proteínas). Dicha distribución se aleja del comportamiento LOG-Normal y tiende a una distribución bimodal; de hecho, aproximadamente 21% de los tumores mostró una alta capacidad de unión del EGF (por encima de 10 fmoles/mg de proteínas). La constante de disociación se obtuvo en el rango de 0,7·16 x 10^{-9} M, con un valor medio de $(3,7 \pm 3,2) \times 10^{-9}$ M.

FIG. 6. Distribución de los valores de R-EGF en tumores mamarios humanos. Cada punto indica el dato de un tumor diferente. El eje de la izquierda muestra la distribución de los valores del contenido de receptores de EGF de la fracción cruda de membranas, en fentomoles por miligramo de proteína. El eje de la derecha indica la distribución de los valores de la constante de disociación en los 40 casos en los que se obtuvo unión específica medible.

Se halló una asociación inversa entre el receptor de EGF y el contenido de receptores de estradiol (RE) (tabla 3).

El 80% de los tumores con valores del receptor de EGF por encima de 10 fmoles/mg de proteína resultaron negativos de receptores de estrógeno, mientras que esta cifra es sólo 41% para los tumores con R-EGF por debajo de 10 fmoles/mg.
RELACIÓN ENTRE EL CONTENIDO DE RECEPTORES DE EGF Y LA PRESENCIA DE RECEPTORES DE ESTRADIOL

En cada columna se da el número de tumores con receptores de estradiol (RE +) y sin receptores de estradiol (RE -) y los porcentajes correspondientes, dentro de cada grupo de tumores correspondiente a un rango dado de receptores de EGF.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1-10</th>
<th>10</th>
<th>%</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE +</td>
<td>32</td>
<td>58</td>
<td>12</td>
<td>60</td>
<td>4</td>
</tr>
<tr>
<td>RE -</td>
<td>23</td>
<td>42</td>
<td>8</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>55</td>
<td>100</td>
<td>20</td>
<td>100</td>
<td>20</td>
</tr>
</tbody>
</table>

Esta relación inversa fue estadísticamente significativa de acuerdo con el test de correlación de rango de Kendall. Por el contrario, no se encontró ninguna asociación entre la expresión de R-EGF y algunas variables clínicas clásicamente relacionadas con la historia natural del cáncer de la mama, tales como la edad, el estado de los ganglios linfáticos, el estado menstrual, la paridad, la edad del primer parto y la lactancia, que sí se relacionan con la presencia de receptores de estradiol, como ha sido previamente demostrado por nosotros (Pascual et al., 1983).

También dosificamos el receptor de EGF en líneas celulares establecidas a partir de tumores mamarios humanos (tabla 4). Nótese que tanto las células MCF-7 y MDA-MB 154 que no poseen receptores de EGF, o un número muy bajo de sitios receptores, poseen receptores de estrógeno, mientras que las células MDA-MB-157 y MDA-MB-468 que poseen de $1 x 10^5$ a $1 x 10^6$ sitios receptores por células han perdido el receptor de estrógeno (RE -).

CONTENIDO DE RECEPTORES DE EGF EN LINEAS ESTABLECIDAS EN CULTIVO DE TUMORES MAMARIOS HUMANOS

<table>
<thead>
<tr>
<th>Línea</th>
<th>EGF sitios/célula</th>
<th>Kd (M)</th>
<th>RE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCF-7</td>
<td>$1,2 x 10^4$</td>
<td>$1,27 x 10^{-9}$</td>
<td>+</td>
</tr>
<tr>
<td>MDA-MB-134</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDA-MB-157</td>
<td>$1,53 x 10^5$</td>
<td>$1,16 x 10^{-9}$</td>
<td>-</td>
</tr>
<tr>
<td>MDA-MB-468</td>
<td>$1,56 x 10^6$</td>
<td>$6,2 x 10^{-9}$</td>
<td>-</td>
</tr>
</tbody>
</table>

Por último, nosotros estudiamos el contenido de receptores de EGF en tumores mamarios espontáneos de ratón. Estos tumores, en su mayoría, no poseen receptores de estrógeno, sin embargo, más del 80% de los tumores espontáneos de mama estudiados en diferentes cepas isógénicas de ratones presentaron receptores de EGF (tabla 5), incluso tumores transplantables de muchos pases como el tumor ascístico de Erlich, presentan sitios receptores de alta afinidad, para el EGF.

Tabla 5

CONTENIDO DE RECEPTORES DE EGF EN TUMORES MAMARIOS ESPONTÁNEOS DE DIFERENTES LÍNEAS ISOGENICAS DE RATÓN

<table>
<thead>
<tr>
<th>Línea</th>
<th>R-EGF (PTM/mg prot)</th>
<th>Kd (M)</th>
<th>RE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>15,09</td>
<td>$2,8 \times 10^{-9}$</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>$4,6 \times 10^{-9}$</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>C3HA</td>
<td>9,5</td>
<td>$3,1 \times 10^{-9}$</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>13,8</td>
<td>$2,8 \times 10^{-9}$</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>$2,3 \times 10^{-9}$</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8,6</td>
<td>$2,9 \times 10^{-9}$</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>IOR</td>
<td>45,6</td>
<td>$8,5 \times 10^{-9}$</td>
<td>-</td>
</tr>
<tr>
<td>5,26</td>
<td>$1,4 \times 10^{-9}$</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DBA/2</td>
<td>21</td>
<td>$3,3 \times 10^{-9}$</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSION

Nuestros resultados demuestran claramente la presencia de sitios específicos de alta afinidad para el EGF en aproximadamente 50% de los tumores mamarios estudiados. La unión del 125I-EGF mostró una cinética de saturación típica con una constante de disociación en el orden de 10^{-9} M, como ha sido descrita para el receptor de EGF en otros tejidos (O’Keefe et al., 1978).

Existe solamente un reporte en la literatura (Fitspatrick et al., 1982), sobre receptores de EGF en tumores mamarios humanos, en que los autores comunican los datos de unión de 125I-EGF a fracciones crudas de membrana de 65 tumores, determinada por la radiactividad unida en un solo ensayo a concentraciones saturantes del ligando. Nuestros resultados concuerdan con los presentados por estos autores y sustentan la conclusión de la existencia de receptores de EGF a partir de curvas completas de desplazamiento a diferentes concentraciones del ligando en 95 pacientes.

La heterogeneidad encontrada con respecto al contenido del receptor de EGF es la característica más importante que debe ser resaltada, porque las alteraciones en la expresión del receptor de EGF podrían ser una evidencia bioquímica de la regulación anormal de la proliferación que opera en el crecimiento tumoral. Resultados experimentales nuestros muestran que en fibroblastos de hamsters chinos in vitro, es un requisito indispensable para la tumorigenicidad la pérdida, al menos parcial, de los requisitos de factores de crecimiento (Pérez et al., 1981; Pérez et al., 1982).

Ha sido demostrado que la transformación maligna inducida por retrovirus va acompañada de la pérdida del receptor de EGF (Todaro et al., 1978) y de la producción de péptidos que compiten con el mismo (De Larco et al., 1978), lo cual puede considerarse una estimulación
“autocrina” del crecimiento; además, actualmente se conoce la similitud existente entre la secuencia primaria del receptor de EGF y la de la proteína codificada por el oncogene v-erb-b, lo que ha dado lugar a la hipótesis de que el producto del oncogene sea un receptor truncado, que al perder el dominio que posee el sitio de unión para el EGF pierda entonces la regulación del dominio de la molécula envuelto en la estimulación de la proliferación celular (Downward et al., 1984), constituyendo esto otras de las posibles alteraciones de los mecanismos del control de la proliferación.

Estas evidencias y el hecho reportado por otros autores, de que en tumores primarios de cerebro de origen no neuronal el contenido de receptor de EGF es muy elevado con respecto a los niveles encontrados en los tumores de origen neuronal y el tejido normal (Libermann et al., 1984), hacen pensar que el mismo podría constituir un marcador bioquímico de indiferenciación tumoral.

Aunque la determinación bioquímica de la unión del 125I-EGF en el homogenado no permite precisar en qué población celular del tumor ocurre esta unión, la dosificación del receptor de EGF, realizada por nosotros en líneas celulares establecidas a partir de tumores mamarios humanos y el hecho de que el epitelio mamario normal responda al EGF en cultivos de órganos (Tonelli et al., 1980), sustentan la hipótesis de que la unión 125I-EGF presente en la fracción cruda de membrana tumoral es una propiedad de las células neoplásicas mamarias. Nuestros resultados también demuestran que los tumores que presentan altos niveles de receptor de EGF generalmente carecen de receptores de estrógeno (ER−), en contraste con los tumores con nulo o ligero contenido de receptor de EGF. Este fenómeno fue observado también en líneas celulares establecidas a partir de tumores de mama humanos y en espontáneos de ratón, lo cual podría sugerir la existencia de una discontinuidad biológica general entre los tumores con alto contenido de receptor de EGF y los de nulo o bajo contenido.

Este inesperado hallazgo fue también reportado por Fitzpatrick y cols (Fitzpatrick et al., 1982), quien encontró que tumores con receptores de EGF generalmente no presentaban receptor de estrógeno (RE−).

Más aun, la pérdida de receptores de diferentes hormonas no puede considerarse como una vía programada secuencialmente hacia la pérdida del control de la proliferación y la indiferenciación. Recientemente fue sugerido por nosotros (Macías et al., 1983) que la pérdida de los receptores de estrógeno y progesterona podría estar relacionada con diferentes vías de progresión neoplásica.

Finalmente, consideramos que el seguimiento de la serie de pacientes a los que se les realizó la dosificación del receptor de EGF en los próximos años permitirá establecer la relación de este nuevo marcador bioquímico con el curso clínico y las características biológicas de la enfermedad, definir su utilidad práctica en el manejo de los pacientes y elaborar hipótesis que den origen a nuevos experimentos.

AGRADECIMIENTOS

Queremos expresar nuestro agradecimiento a los técnicos Mercedes Ramos y Danilo Valdés por su ayuda en la parte técnica de este trabajo.
REFERENCIAS

