Trabajo de revisión

Mycoplasmas y cultivos celulares

B. V. Rodríguez¹, A. J. Otero¹, J. L. Alfonso¹ y A. Rodríguez²

1. Centro Nacional de Investigaciones Científicas, 212 No. 1914, Atabey, La Habana, Cuba
2. Centro Nacional de Biopreparados, Apartado 6880, Cubanacán, La Habana, Cuba

Recibido en marzo de 1987

INTRODUCCION

La infección de cultivos de células animales por micoplasmas es uno de los principales problemas encontrados en las investigaciones biológicas y en las aplicaciones que dependen de células cultivadas.

El primer reporte sobre la presencia de micoplasmas en cultivos celulares se remonta a 1956, en un trabajo publicado por Robinson y colaboradores, donde se observó el crecimiento de colonias típicas de estos organismos en todas las placas, incluyendo los controles, que solo contenían líquido proveniente del cultivo de células HeLa (Robinson y cols., 1956). Desde entonces, se ha publicado una extensa bibliografía acerca de este tipo de infección, en la cual se incluyen trabajos de prevención, detección, control y efectos de ella sobre las células (Mc Garrity, 1982a; Mc Garrity y cols., 1983a).

La concentración de estos microorganismos en los cultivos celulares es de aproximadamente 10⁷-10⁸ UFC/ml de medio sobrenadante. Este tipo de infección resulta difícil de detectar y complica los estudios estructurales, genéticos, bioquímicos e inmunológicos de células y tejidos.

El objetivo de este trabajo de revisión es dar a conocer algunas de las investigaciones efectuadas en este campo, los métodos más eficaces realizados y la complementación de los mismos, con el fin de resolver la problemática en los laboratorios de cultivos celulares.

Principales características de los micoplasmas

Los micoplasmas son organismos procarióticos pertenecientes a la división Tenericutes, se encuentran en la clase Mollicutes, orden Mycoplasmatales, donde aparecen tres familias (Mc Garrity y cols., 1984b).

- Familia I Mycoplasmataceae
- géneros:
 - género I Mycoplasma
 - género II Ureaplasma
- Familia II Acholeplasmataceae
- género I Acholeplasma
- Familia III Spiroplasmataceae
- género I Spiroplasma

Copyright © 1987, Sociedad Iberolatinoamericana para Investigaciones sobre Interferón
Publicado por el Palacio de las Convenciones, La Habana, Cuba
El tamaño del genoma del género *Mycoplasma* es de aproximadamente $0.5 \cdot 10^9$ dalton. El género *Acholeplasma* tiene un genoma mayor, del orden de $1.0 \cdot 10^9$ dalton (Stanbridge y cols., 1979).

Los micoplasmas son reconocidos como cocobacilos pleomórficos, localizados principalmente en los bordes celulares asociados con la membrana plasmática y en los espacios intercelulares con grupos de células (Stanbridge y cols., 1977). Estos organismos pueden ser diferenciados por su tamaño, y confundirse con bacterias, levaduras y rickettsias por su carencia de pared celular, sin embargo, pueden confundirse bajo el microscopio con artefactos causados por fijaciones inadecuadas y restos celulares en las tinciones, lo cual puede dar resultados erróneos a la hora de evaluar una preparación.

Las principales especies de micoplasmas (95 por ciento de los aislamientos) responsables de la infección en los cultivos celulares son:

- *Mycoplasma orale* (hospedero natural humano)
- *Mycoplasma arginini* (hospedero natural bovino)
- *Mycoplasma hyorhinis* (hospedero natural porcino)
- *Acholeplasma laidlawii* (hospedero natural bovino)

Estas especies difieren significativamente en la utilización de nutrientes y en los requerimientos nutricionales, por ejemplo: el *Acholeplasma laidlawii* y el *Mycoplasma hyorhinis* son organismos fermentativos, a diferencia del *Mycoplasma orale* y del *Mycoplasma arginini*, los cuales convierten la arginina a citrulina y ornitina generando ATP. Por otra parte, el *Acholeplasma laidlawii* no requiere esterolas para crecer, sin embargo, las especies de *Mycoplasma* si necesitan esterolas para su crecimiento, los cuales deben ser suministrados al medio, por ser ellas incapaces de sintetizarlos (Mc Garrity y cols., 1984a).

Origen y consecuencias de la infección por micoplasmas en cultivos de tejidos

Los hospederos naturales de estas especies sugieren que la infección de las células en un cultivo *in vitro* proviene del personal de laboratorio (*Mycoplasma orale*) y el suero bovino (*Mycoplasma arginini* y *Acholeplasma laidlawii*). A pesar de que el *Mycoplasma hyorhinis* está relacionado con el ganado porcino, nunca se ha podido aislar este microorganismo de la tripsina, que es un producto de amplio uso en los cultivos celulares. La colección, preparación y control de la calidad del suero bovino, han reducido la incidencia de contaminación de este producto por micoplasmas (Mc Garrity y cols., 1979).

Un cultivo de células puede afectarse por una infección con micoplasmas de dos formas diferentes:

1. Por acción directa de los productos genéticos del micoplasma.
2. Por utilización de los componentes del medio de cultivo (una infección con *Mycoplasma orale* agota drásticamente la arginina del medio del cultivo celular, dando como resultado un aumento en la concentración de ornitina) (Stanbridge y cols., 1971), lo cual puede provocar aberraciones cromosómicas y citopatológicas (Aula y cols., 1977).

Los micoplasmas codifican para 550 productos génicos, basado en el tamaño del genoma, de $0.5 \cdot 10^9$ dalton (Mc Garrity y cols., 1984b). Pueden matar la célula cultivada o afectar su rango de crecimiento. La infección puede producir diferentes efectos genéticos en las células (rupturas cromosómicas, cambios robertsonianos, alteraciones en la incorporación de nucleósidos) y actuar negativamente en la actividad de la enzima hipoxantina fosforibosiltransferasa (HPRT).

Bajo determinadas condiciones, la infección por micoplasmas puede reducir la concentración efectiva de bromodioxiruridina (BuDR) en los ensayos de intercambio de cromátidas hermanas, posiblemente inhibiendo la diferenciación de las cromátidas.
De esto se deduce que el efecto citogenético de la infección con micoplasmas en los cultivos de células animales puede comprometer los estudios de mutagénesis, carcinogénesis, genética, mapeo genético, análisis enzimático e incluso procedimientos de diagnóstico clínico (Mc Garrity y cols., 1984a).

El efecto de este tipo de infección en los cultivos de células animales ha sido reportado en numerosos trabajos (Mc Garrity, 1982a; Mc Garrity y cols., 1984b; Schneider y cols., 1975), donde se demuestra que el efecto provocado por una especie de micoplasma puede variar con respecto a la línea celular de que se trate, por ejemplo: al ser infectado un cultivo celular de 3T6 (fibroblasto de ratón) con una cepa de Acholeplasma laidlawii, se produjo citotoxicidad en el cultivo, disminución del crecimiento y muerte celular, sin embargo, esta misma cepa no produjo ningún tipo de alteración al infectar un cultivo de células HeLa (carcinoma de útero) (Mc Garrity y cols., 1985). Todo esto da una medida de la importancia que tiene realizar el control de este microorganismo en los cultivos celulares e implantar como norma en un laboratorio de cultivo de células animales, métodos rápidos de detección y eliminación de la infección, para obtener resultados confiables en las investigaciones que dependen de células cultivadas.

Principales métodos de detección

Se han reportado numerosas técnicas para detectar y aislar micoplasmas de los cultivos celulares, entre las que podemos distinguir:

1. **Métodos directos de valor diagnóstico**
 - cultivo microbiológico,
 - detección mediante anticuerpos.
2. **Métodos indirectos de valor complementario**
 - tinción de ácidos nucleicos, directamente o mediante células indicadoras,
 - pruebas bioquímicas a productos asociados al micoplasma,
 - microscopía electrónica,
 - citotoxicidad mediada por micoplasmas.

Todos los métodos de detección requieren controles positivos y negativos. El diagnóstico de este tipo de infección a un cultivo celular, se realiza tres o cuatro días después de ser subcultivados, lo cual permite al microorganismo crecer a altas concentraciones, si está presente. Los cultivos deben crecer en un medio libre de antibióticos por dos pases, al menos, para evitar el enmascaramiento de la infección, y por tanto, obtener resultados falsos negativos.

METODOS DIRECTOS

Cultivo microbiológico

Consiste en utilizar un medio libre de células con determinados requerimientos, el cual es inoculado a partir de una suspensión de células del cultivo sospechoso de contener la infección, con el objetivo de obtener el crecimiento de colonias típicas de estos organismos.

Con este fin se utiliza un medio básico compuesto por caldo micoplasma, arginina, dextrosa, suero de caballo y extracto de levadura a pH 7.4 ±0.2. En el aislamiento puede utilizarse el caldo o añadirle agar noble para emplearlo como medio sólido (Mc Garrity y cols., 1983b). Las muestras son inoculadas en agar y en medio líquido, pasadas en este último caso a medio sólido a los siete días, en anaerobiosis. Se ha reportado la superioridad de la incubación anaeróbica sobre la aeróbica, detectándose el 98 por ciento de los aislamientos realizados en agar.
después de la incubación anaeróbica (Mc Garrity y cols., 1980). La incubación aeróbica solo
deteció el 49 por ciento de los aislamientos (Mc Garrity y cols., 1979).

El diagnóstico se realiza por observación de las colónias características con apariencia de
“huevo frito”, que generalmente no aparecen en aislamiento primario, las cuales pueden distinguiérselos de otros artefactos por tinción con el colorante de Dienes, que da color azul a causa de la
presencia de la enzima maltasa en el micoplasma.

Es de gran importancia probar previamente los medios de cultivo, pues esto puede influir en el éxito del aislamiento y crecimiento del micoplasma. La calidad de los componentes del
medio pueden variar con el lote y la producción.

La concentración óptima del agar debe predeterminarse, pues puede haber toxicidad y afectar el crecimiento de los micoplasmas; debe usarse preferiblemente un agar 2 purificado.

Aunque la mayoría de los micoplasmas crecen a pH 7.4, el pH óptimo puede variar, de 6 a 8.5 en dependencia del organismo específico.

Hasta 1973 se pensó que este medio convencional detectaría todos los micoplasmas presente
nes en los cultivos de tejido, sin embargo, a fines de este año Hoppys y cols. reportaron que una cepa de Mycoplasma hyorhinis no se propagaba en agar (Hoppys y cols., 1973). En relación con esto, diferentes investigadores han obtenido resultados similares, por ejemplo, Del Guidice y cols. en 1978 plantearon que 244 de 394 cepas de Mycoplasma hyorhinis (lo que representa el 61 por ciento) no crecían en agar (Del Guidice y cols., 1978); Mc Garrity y cols., en 1980 reportaron que 33 de 41 cepas de Mycoplasma hyorhinis (80 por ciento) no crecían en medio sólido. Como explicación a esto se plantea que la causa del no crecimiento de estas cepas en medio sólido era producto de sustancias inhibitoras presentes en el extracto de levadura añadido al medio (Del Guidice y cols., 1980).

Debemos tener en cuenta que muchas cepas de micoplasmas, que han estado contaminando durante años células animales, pueden haber logrado una adaptación tal al ambiente celular que el pase brusco a un medio libre de células animales puede retardar su crecimiento, hasta tal punto, que la detección resulte en un falso negativo, aunque tengamos un espléndido crecimiento de la cepa salvaje que pueda tenerse como control positivo. Esto conduce a la necesidad de la complementación técnica para la detección de esta infección en cultivos de células animales.

En nuestro caso, utilizamos esta técnica de control microbiológico para detectar la posible infección por parte de estos microorganismos a algunas de las células presentes en el laboratorio, lo cual se muestra en la figura 1, donde aparecen colonias típicas de micoplasmas con apariencia de “huevo frito”, aisladas de la suspensión celular correspondiente a las líneas celulares 3T6 (fibroblasto de ratón), KB (carcinoma oral humano) y FL (amnio humano).

Detección mediante anticuerpos

Conocida hasta hace poco como detección serológica, por emplear antisieros específicos
capaces de detectar especies diferentes, hoy día este método se ha visto enriquecido con el uso
de anticuerpos monoclonales que aumentan notablemente la especificidad y la eficiencia de la
identificación, al evitar las dificultades de reacción cruzada tan frecuentes en las prepara-
ciones policionales. Ha sido publicado un método de detección de la infección por micoplasmas
en células de línea linfoblastoide, utilizando anticuerpos monoclonales; ellos produjeron los
anticuerpos monoclonales SFR1-Mycop1 y SFR1-Mycop2, capaces de detectar el Mycoplasma
fermentans en la línea celular linfoblastoide, la especificidad de estos anticuerpos contra la
especie anteriormente mencionada fue determinada por inmunofluorescencia (Susan y cols.,
1984).
FIG. 1. Colonias típicas de micoplasmas aisladas de la suspensión correspondiente a la línea celular 3T6, KB y FL.

MÉTODO DE DETECCIÓN INDIRECTA

Mediante estos métodos se evalúa la existencia o actividad de un producto genético o una característica que esté asociada a los micoplasmas, y que no está presente en cultivos libres de infección. Los procedimientos de detección indirecta no deben considerarse por sí solos como procedimientos de diagnóstico, pues la evidencia obtenida no es absolutamente exclusiva de micoplasmas y su valor depende de la capacidad de complementación con otras técnicas, que en conjunto, permiten el nivel de confiabilidad deseado. Por tales razones, en estos ensayos la selección de controles positivos y negativos es de importancia primordial.

Debemos considerar en estos métodos la utilización de células indicadoras cuyo objetivo es la referencia a un sistema del cual son conocidos la sensibilidad y los patrones de comportamiento ante la infección, en los que puedan evaluarse con más confianza controles positivos y negativos, con los que se dispone.

Estos sistemas de células indicadoras deben tener como característica para su utilización la facilidad de propagación, deben ser conservadas en nitrógeno líquido y descongeladas cada tres meses, para controlar su esterilidad y otros cambios que puedan presentarse.

Como ejemplo de estas células tenemos la línea celular 3T6 (fibroblasto de ratón), de amplio uso en la actualidad, y que ha mostrado eficiencia en más de 10 000 ensayos realizados (Dei Guidice y cols., 1978).

Tinción de ácidos nucleicos

Mediante esta técnica pueden observarse núcleos celulares fluorescentes solamente en los cultivos libres de micoplasmas, a diferencia de los cultivos infectados, donde se observa, además, la existencia del ácido desoxirribonucleico (ADN) micoplasmal como fluorescencia extranuclear, producto de la infección.
Deben observarse, al menos, diez campos antes de dar como negativo el resultado (McGarrity y cols., 1984b).

Pueden existir diferentes causas de falsos positivos, por ejemplo:
- la contaminación microbiológica del colorante,
- la alta concentración de células indicadoras,
- la fragmentación y daño nuclear causado por la especie que infecte el cultivo (muere en medio ácido o crece inmediatamente en condiciones favorables).

También hay causas que provocan resultados falsos negativos entre las que encontramos:
- el no crecimiento de los micoplasmas en el cultivo de células indicadoras,
- la pobre adsorción del micoplasma a las células indicadoras o a la superficie del porta-objeto, aun cuando la concentración sea de 10^7-10³ UFC/ml.

Los micoplasmas encontrados varían en el grado de adsorción que manifiestan hacia las células infectadas, lo cual está en dependencia de la línea celular y la especie de micoplasma que infecta (McGarrity y cols., 1983c).

Generalmente, el *Mycoplasma haemophilus* “citoadsorbe” y “fluorece” mejor que los otros micoplasmas encontrados en cultivos celulares, como es el caso del *Mycoplasma arginini*, que no citoadsorbe bien, por lo cual es necesario recorrer suficientes campos para detectar bajos niveles de citoadsorción; es por eso que generalmente se utilizan el *Mycoplasma haemophilus* y el *Mycoplasma oral* como controles positivos, porque citoadsorben fuertemente.

Mediante esta técnica de ADN fluorescente, es posible detectar, además, otros organismos no micoplasmas, procarioníticos en general, por lo que este método no da un diagnóstico definitivo, pues una fluorescencia extranuclear no es índice seguro de que exista solo micoplasma, sino ADN procarionítico, lo que apunta a la necesidad de la complementación técnica para diagnosticar la infección por micoplasmas (McGarrity y cols., 1984b).

Se ha reportado la utilización del colorante Hoechst 33258 en este método de detección, el cual por su rapidez y sensibilidad permite realizar el diagnóstico de esta infección con cierto grado de confiabilidad (Chen, 1977).

En las figuras 2, 3, 4 y 5 pueden apreciarse los resultados obtenidos por nosotros, utilizando el fluorocromo anteriormente mencionado en la detección de la infección. Nótese la fluorescencia en los espacios intercelulares correspondientes a la línea celular KB, producto de la infección (figura 2), lo que fue comparado con el control positivo utilizado (3T6 infectada con *Mycoplasma haemophilus*) (figura 3); en el caso de la línea celular J774 (macrófago de ratón transformado), se observa solo fluorescencia en los núcleos celulares (figura 4), comportándose igual que el control negativo (3T6 libre de infección), lo cual corrobora que esta última línea celular está libre de infección. La figura 5 corresponde al control negativo utilizado.

Se ha reportado un método simple para detectar micoplasmas en cultivos celulares, utilizando el 4'-6 diamidino-2 phenilindone (DAPI), que determina ADN en células infectadas con micoplasmas y virus; el método ha sido aplicado a diferentes líneas celulares como HeLa (carcinoma uterino humano), KB (carcinoma oral humano), BHK 21 (riñón de Hamster recién nacido) y LLCMK 2 (fibroblasto de ratón), y en todos los casos donde se hubiera detectado la infección por técnicas convencionales de cultivo en agar, fue posible detectar la misma rápidamente. Como resultado se obtienen focos fluorescentes discretos en el citoplasma y en la superficie de las células infectadas (Russell y cols., 1975).

Métodos bioquímicos de detección

Muchos investigadores han descrito procedimientos en los cuales involucran la determinación de la actividad enzimática de proteínas micoplasmales, como índice de la presencia de estos organismos.

100
FIG. 2. Línea celular KB teñida con Hoechst 33258.

FIG. 3. Línea celular 3T6 infectada con Mycoplasma hyorhinis y teñida con Hoechst 33258, utilizada como control positivo.
FIG. 4. Línea celular J774 teñida con Hoechst 33258.

FIG. 5. Línea celular 3T6 libre de infección con micoplasma y teñida con Hoechst 33258, utilizada como control negativo.
Se ha empleado la determinación de la actividad enzimática de la uridina fosforilasa (UdRP) para detectar la infección. Esta actividad enzimática fue encontrada en micoplasmas presentes en cultivos celulares y no en fibroblastos, linfocitos u otros cultivos diferenciados. Este método no ofreció resultados confiables al encontrarse niveles significativos de UdRP en células libres de micoplasmas, concluyéndose que este procedimiento es limitado a ciertas cepas de micoplasmas y no incluye a todas las especies encontradas en cultivos celulares (Levine, 1974).

Algunos investigadores, tratando de demostrar la actividad adenosín fosforilasa como índice de infección por estos organismos, encontraron que algunos de ellos por ejemplo, el Mycoplasma pneumoniae, el Mycoplasma lipoophilum y otras cepas no clasificadas, no exhibían esta actividad enzimática. Se demostró que esta dificultad aparece por el hecho de que los micoplasmas varían en su habilidad de incorporar precursores del ácido nucleico (Hatanaka y cols., 1975). Se ha encontrado también que ciertas cepas de micoplasmas no incorporan algunos precursores, lo cual refleja en ellas la carencia de la actividad adenosín fosforilasa (Mc Ivor y cols., 1978).

También se ha utilizado la proporción uridina-uracilo para detectar la infección, ya que en células libres de micoplasmas se incorpora poco uracilo y grandes cantidades de uridina, a diferencia de las células infectadas, donde hay mayor incorporación de uracilo y menor de uridina. La confiabilidad de este método ha sido cuestionada, pues a veces los resultados no coinciden con otras evaluaciones (Schneider y cols., 1974).

Se ha reportado la utilización de la autoradiografía para detectar la infección de los cultivos marcados con timidina tritada; debe aparecer mayor marcaje en el citoplasma en comparación con el núcleo, pues los micoplasmas incorporan la timidina marcada ocurriendo un cambio enzimático de timidina a timina por acción del microorganismo (Nardon e y cols., 1965).

Citotoxicidad mediada por micoplasmas

Recentemente se ha publicado un método de detección basado en la citotoxicidad mediada por estos organismos (Mc Garrity y cols., 1982b); es un método sencillo que no requiere equipos especiales y consiste en incubar el cultivo supuestamente infectado con 6-metilpurina desoxirribose (6 MPDR), que es convertido por la enzima adenosín fosforilasa presente en los micoplasmas a dos productos tóxicos a las células de mamíferos, la 6-metilurina y la 6-metilpurina ribosa, lo cual evidencia indirectamente la existencia de la infección. Utilizando este método, dichos investigadores detectaron la presencia de la actividad adenosín fosforilasa en dos especies de micoplasmas: Mycoplasma pneumoniae y Mycoplasma lipoophilum, las cuales Hatanaka y cols., en 1975, habían reportado como no poseedoras de esta actividad enzimática.

Este método, aunque factible, tiene sus limitaciones, ya que no detecta todas las cepas de micoplasmas; no es recomendado para probar sueros mediante células indicadoras a causa de la falta de sensibilidad por baja concentración de infección. Puede dar falsos positivos si hay contaminación en el medio con Bacillus subtilis u otros organismos que presenten la enzima adenosín fosforilasa en cantidades suficientes para convertir el 6 MPDR en los dos productos tóxicos a las células.

En nuestro caso, la utilización de este producto nos permitió corroborar los resultados obtenidos por otros métodos de detección. Todas aquellas líneas celulares que resultaron infectadas, al aplicarle un determinado procedimiento de detección se comportaron de igual forma al ser sometidas a este producto.

Microscopía electrónica

La no detección de formas sospechosas no es prueba absoluta de su ausencia, y por otra parte, su descubrimiento, aunque coincidan en tamaño, ubicación, abundancia y carencia de pared celular, no puede descartar la confusión con estructuras celulares o de otro tipo.
Se ha utilizado en la detección de la infección con micoplasmas la microscopía electrónica de transmisión (MET) y el microscopio electrónico de barrido.

El uso de la MET constituye un procedimiento trabajoso, costoso y poco eficiente, a causa de la panorámica tridimensional que se obtiene de las células y sus contrarios (Phillips, 1978).

La utilización del microscopio electrónico de barrido es más efectiva; su eliminación radica en que solo puede utilizarse para muestrear un bajo número de cultivos (Brown y cols., 1974; Phillips, 1978).

Ambas técnicas son ineficientes cuando se utilizan microorganismos de baja citoadsorción, que probablemente no queden retenidos en cantidades suficientes dentro de los paquetes celulares, lo cual es necesario para el procesamiento de las muestras celulares utilizadas en la microscopía electrónica.

Tratamiento y prevención de la infección por micoplasmas

Muchos han sido los métodos desarrollados con el objetivo de eliminar estos microorganismos de los cultivos celulares, pero algunos no son aplicables a todas las especies y cepas de micoplasmas, y otros puede que eliminen la infección, pero afectan la integridad y fisiología de la célula (Van Diggelen y cols., 1977; Marcus y cols., 1980).

Entre los procedimientos de tratamiento tenemos: el empleo de antibióticos, los pases de líneas celulares de tumores infectadas con micoplasmas a través de ratones desnudos, utilización de macrófagos de ratón y toxicidad selectiva a micoplasmas.

El tratamiento con antibióticos ha sido exitoso en algunos laboratorios, sin embargo, la eficiencia de este método varía con la cepa de micoplasma y el antibiótico a emplear; además, pueden existir cepas que desarrollen resistencia a los antibióticos antes de que puedan ser eliminadas (Rahman y cols., 1967).

En 1984 fue desarrollado un método simple y eficiente, el cual elimina la infección y logra establecer células de línea libres de micoplasmas: se probaron diferentes antibióticos en líneas celulares infectadas experimentalmente con Acholeplasma laidlawii, Mycoplasma arginini, Mycoplasma hyorhinis y Mycoplasma orale, logrando resultados satisfactorios en la eliminación de esta infección utilizando minociclina y tiamicina. Este procedimiento fue efectivo cuando se aplicó a líneas celulares que habían sido infectadas con micoplasmas crónicamente durante muchos años, obteniéndose células libres de infección (Schmidt y cols., 1984).

Se ha reportado un método exitoso en la eliminación del Mycoplasma hyorhinis de líneas celulares tumorales, mediante pases de estas a través de ratones desnudos (Van Diggelen y cols., 1977).

La contaminación por micoplasmas en líneas de mieloma, ha traído resultados fatales en las fusiones realizadas en numerosos laboratorios de híbridos. Las líneas de mieloma proliferan normalmente, incluso en presencia de una infección con micoplasma, pero en el caso de la producción y conservación del híbrido, esto constituye un factor limitante (Bastin y cols., 1982).

Se ha reportado un método de eliminación de la infección con micoplasmas en híbridos, mediante la inoculación intraperitoneal de los mismos en ratones Balb/c, recuperándose los híbridos de la ascitis producida, totalmente libres de infección (Roseto y cols., 1984).

Este método se aplica en nuestro laboratorio como tratamiento a las células de mieloma de ratón (P3 X63 Ag8. 653), necesarias para las fusiones; la efectividad del tratamiento se ha comprobado en la práctica con el éxito de las fusiones en la obtención de híbridos.

También se ha descrito un método de eliminación de este tipo de infección mediante la utilización de detergente, lo cual depende de la sensibilidad de la cepa de micoplasma a la lisis.
por el mismo. Se han obtenido resultados satisfactorios al aplicarle este tratamiento a células de mieloma de ratón (X 63, FO) y en líneas de mieloma humano, aplicando de uno a tres ciclos de tratamiento del detergente (0,01 por ciento Berol 0,43) (Reynolds y cols., 1979).

Fue reportada también la utilización de cosechas frescas de ratón en la eliminación de cultivos de células animales infectadas con micoplasmas (Schimmelpfeng y cols., 1980).

Algunos laboratorios han reportado éxitos en la eliminación de la infección, utilizando el método de incorporación selectiva del 5-bromouracilo por micoplasmas y no por células de mamíferos (Marcus y cols., 1980).

Prevención de la infección

Un cultivo infectado por micoplasmas puede ser la mayor fuente de infección en un laboratorio, por lo cual deben adoptarse medidas necesarias para evitar la posible diseminación de la misma a otros cultivos celulares libres de infección, pues el micoplasma presente en una gota de cultivo puede sobrevivir de siete a diez días en la superficie metálica de un gabinete de flujo laminar.

En 1983, Mc Garrity y colaboradores desarrollaron un programa de control de calidad, eficiente para prevenir, detectar y controlar la infección por micoplasmas en los cultivos celulares (Mc Garrity y cols., 1983a).

Entre estas recomendaciones figuran las siguientes:
- Debería designarse un laboratorio específicamente para cultivos de células y equiparlo para procedimientos asépticos.
- Obtener cultivos celulares de fuentes confiables.
- Conocer la historia y los cheques de control de calidad de los cultivos de reciente adquisición.
- Desde su llegada al laboratorio, todos los cultivos deben pasar por cuarentena hasta concluir ensayos de esterilidad. De no estar organizado el procedimiento de cuarentena, deben manipularse los cultivos al final de la jornada laboral.
- Hacer ensayos sistemáticos para la complementariedad según lo requiera el caso.
- Cuando el cultivo celular esté libre de infección, debe conservarse por congelación en nitrógeno líquido.
- Al concluir el trabajo con un determinado cultivo, debe desinfectarse bien el área de labor, para eliminar posibles contaminantes que puedan permanecer en una gota de medio.
- Deben utilizarse medios de cultivo libres de antibióticos, excepto en el caso de cultivos celulares primarios, por tener estos una elevada propensión a la infección.
- Eliminar el "pipeteo" bucal directo o con accesorios.
- Desinfección cuidadosa de la cristalería o usar plásticos desechables.
- Trabajar en condiciones de seguridad en un gabinete de flujo laminar.
- Deben mantenerse medidas de seguridad para la manipulación en el área de trabajo estéril.
- Los cultivos celulares infectados deben ser "autoclavados" o puestos en cuarentena.
- El control de calidad de las pruebas para micoplasmas requiere:
- Hacer protocolos con controles positivos y negativos.
- Chequear sistemáticamente los componentes del medio utilizado.
- Conservar las cepas patrones de micoplasmas por congelación en nitrógeno líquido o liofilizadas.
- Planificar un sistema de almacenamiento, evitando errores de rotulación.
- Identificar el aislamiento cuando hay infección en los cultivos ensayados, los cuales deben estar en un medio libre de antibióticos, al menos por dos pases.
Debe tenerse en cuenta la naturaleza del cultivo celular, pues hay cepas de micoplasmas que no se detectan fácilmente y requieren otros procedimientos.

La identificación de una especie de micoplasma aislada de un cultivo celular, puede llevarse a cabo por inhibición del crecimiento, inmunofluorescencia en cultivos celulares o fluorescencia en placas de agar (McCarty y cols., 1985).

La técnica de inhibición del crecimiento no es tan sensible como la inmunofluorescencia, pero puede realizarse fácilmente sin requerimientos especiales y a través de ella pueden detectarse mezclas de micoplasmas (Clyde, 1964). Mediante la inmunofluorescencia es posible detectar también mezclas de estos microorganismos presentes en las muestras a analizar, y obtener un gran poder de sensibilidad con la misma. Existe un suero comercial de anticuerpos monoclonales para cuatro especies de micoplasmas, de gran utilidad en la identificación de estos organismos.

De todo lo expuesto podemos concluir, que cada investigador que utilice cultivos de células animales en su trabajo debe conocer las características y consecuencias que tal infección puede provocar, manteniendo una vigilancia constante de esta situación para poder interpretar objetivamente los resultados de sus experiencias.

REFERENCIAS

