Introducción

La Meningoencefalitis viral (MEV) es un síndrome multietiológico. Virus que difieren ampliamente en su morfología, composición química y replicación pueden producir iguales cuadros clínicos, con lesiones histopatológicas idénticas en el sistema nervioso central (SNC).

Los enterovirus, pertenecientes a la familia Picornaviridae son los agentes etiológicos más comunes de las MEV (1, 2). Los enterovirus no polio (Coxsackievirus, Echovirus y los enterovirus del 68 al 71) han sido más estudiados como agentes productores de MEV, desde el efectivo control de los Poliovirus, debido a la introducción de las vacunas.

Los brotes epidémicos suceden en nuestro país con una periodicidad de 4 años. Los registros históricos de reportes de MEV en Cuba han sido en 1985-86 (epidemia de Echovirus 4) y en 1994 (epidemia de Echovirus 30) (3).

Teniendo en cuenta la frecuencia de las MEV en nuestro medio y en el mundo, y conociendo que constituyen un problema de salud importante, sobre todo en la edad pediátrica (4), nos dimos a la tarea de realizar un estudio de la etiología de este síndrome.

En el presente trabajo se hace una recopilación de los estudios virológicos realizados en el Laboratorio de Enterovirus del Instituto de Medicina Tropical "Pedro Kouri" (IPK, Ciudad de La Habana), en muestras de pacientes diagnosticados clínicamente con MEV en el período de 1990-1995, trazándonos como objetivos: brindar datos que permitan un mejor conocimiento de la participación de los enterovirus como agentes etiológicos de las MEV en nuestro medio, mostrar el predominio de aislamiento de diferentes tipos de enterovirus en casos MEV en el período de 1990-1995 y relacionarlo con la tasa de incidencia de MEV, describir los resultados virológicos encontrados en las epidemias durante este período y valorar el uso de los sueros pares en el diagnóstico de MEV por enterovirus.

Materiales y Métodos

Muestras

En el periodo de 1990 a 1995 se recibieron en el Laboratorio de Enterovirus del IPK 586 muestras de heces fécales (HF), 108 líquidos cefalorraquideos (LCR) y 1 095 sueros pares, para un total de 1 789 muestras pertenecientes a 1 458 casos diagnosticados clínicamente como MEV.

Procesamiento de las muestras (5)

Las muestras se tomaron en condiciones estériles y se trasladaron al laboratorio en frío o congeladas, conservándose a -20 °C hasta el momento de su tratamiento.

De las HF, se realizó una suspensión al 10% en Solución Tamponada de Fosfato (STF) y se centrifugó a 13 000 rpm durante 10 min. El sobrenadante se trató con cloroformo, se centrifugó en las mismas condiciones anteriores y se le añadió antibióticos (Penicilina y Estreptomicina en concentración final de 1 000 U y 1 000 µg/mL, respectivamente). Los LCR se inocularon sin tratamiento previo. Los sueros se diluyeron 1/10, se trataron con cloroformo y se centrifugaron a 13 000 rpm durante 10 min. El sobrenadante se decantó para su utilización en la prueba de neutralización (NT).

Inoculación en los cultivos celulares (5)

Para el estudio de las HF y LCR se usaron 2 sistemas celulares:

1. Células de línea de riñón de mono verde africano adulto normal Cercopithecus aethiops (Vero), en el rango de 130-145 pases.
2. Células diploides de fibroblastos de pulmón embrionario humano (PH-1) en el rango de 17-21 pases.

Las muestras se inocularon por duplicado (200 µL por tubo) en los tubos de cultivo de los sistemas celulares anteriores, previo cambio del medio de crecimiento (con 10% de suero de bovino fetal), por el del medio de mantenimiento (con 2% de suero de bovino fetal). Los cultivos se incubaron a 37 °C, observándose al microscopio diariamente durante 5 días. Los tubos que mostraron efecto citotopagético, característico de enterovirus (ECP), se congelaron a -70 °C y se les dió 2 pases más; si se mantuvo el ECP, se congeló nuevamente para realizar la identificación. Se consideraron negativas las muestras que no dieron ECP después de 3 pases ciegos con 5 días de observación cada uno.
Identificación viral

Los aislamientos con ECP, característicos de la infección entorviral, se identificaron por Nt (micrométodo), previamente determinados los 100 TCD₃₀ de los virus aislados (5). La identificación se realizó con mezclas de sueros equinos hiperinmunes a enterovirus, según el esquema de Lim Benyesh-Melnick (LBM) que permite identificar 42 serotipos diferentes.

Determinación de anticuerpos neutralizantes (Ac NI)

Los sueros pareados obtenidos se investigaron por Nt (micrométodo) del ECP en células Vero (5). Los virus utilizados fueron: Echovirus 4, 6, 9, 11 y 30; Coxsackievirus A9, A16, B1, B2, B3, B4, B5 y B6, mantenidos en pases sucesivos en líneas celulares susceptibles y conservados a -70 °C.

Se añadió a la placa de 96 pocillos y fondo plano 25 μL de medio 199 a partir de la 2da hasta la 6ta fila. Se realizaron diluciones de los sueros partiendo de 1:10 a 1:320. Se añadió 25 μL de la dilución del virus que contiene 100 TCD₃₀, previamente determinado. Se hicieron controles de la dosis del virus, control de suero y control de células. Se agitó e incubó a 37 °C en atmósfera de CO₂ al 4% durante 2-4 h. Posteriormente, se añadió a toda la placa 150 μL de suspensión de células Vero en una concentración de 200 000 cel/mL. Se agitó e incubó a 37 °C en atmósfera de CO₂ al 4%. La lectura se realizó en microscopio invertido a los 5 días, cuando el control viral mostró un ECP que revelaba los 100 TCD₃₀ del virus utilizado en la prueba.

Criterion de positividad: se consideró como positivo la seroconversión, el incremento de 4 o más diluciones del 2do suero con respecto al 1ro y los títulos altos en ambos sueros (1:80 o más) frente al virus identificado como agente causal de un brote.

Análisis estadístico

El análisis estadístico se realizó por las Prueba de Kolmogorov-Smirnov y Prueba de Diferencias Significativas, para p < 0,01 en ambas casas.

Resultados y Discusión

La positividad de las muestras recibidas para aislamiento (HF y LCR) se observa en la Tabla 1. Se investigaron 694 muestras: 586 HF y 108 LCR, de las cuales fueron positivas a enterovirus 217 HF (37,03%) y solo 8 LCR (7,40%), y de éstos, 3 fueron positivos también en HF. En total, se realizaron 225 aislamientos para un 32,42%. El año en que más aislamientos se obtuvo fue 1994. Se encontró un mayor porcentaje de aislamientos en HF que en LCR (p < 0,01), comprobándose que las HF son más productivas con fines de aislamiento (5).

<table>
<thead>
<tr>
<th>Año</th>
<th>HF</th>
<th>HF Pos (%)</th>
<th>LCR</th>
<th>LCR Pos (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>112</td>
<td>38(33,92)</td>
<td>10</td>
<td>0(0)</td>
<td>38</td>
</tr>
<tr>
<td>1991</td>
<td>176</td>
<td>50(28,40)</td>
<td>5</td>
<td>0(0)</td>
<td>50</td>
</tr>
<tr>
<td>1992</td>
<td>66</td>
<td>8(12,12)</td>
<td>2</td>
<td>0(0)</td>
<td>8</td>
</tr>
<tr>
<td>1993</td>
<td>60</td>
<td>12(20,0)</td>
<td>47</td>
<td>0(0)</td>
<td>12</td>
</tr>
<tr>
<td>1994</td>
<td>118</td>
<td>87(73,72)</td>
<td>31</td>
<td>8(25,80)</td>
<td>95</td>
</tr>
<tr>
<td>1995</td>
<td>54</td>
<td>22(40,74)</td>
<td>13</td>
<td>0(0)</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td>586</td>
<td>217(37,03)</td>
<td>108</td>
<td>8(7,40)</td>
<td>225(32,42%)</td>
</tr>
</tbody>
</table>

Fuente: Laboratorio de Enterovirus.

En 1990-91 se produjo un brote epidémico de MEV en la población infantil de nuestro país, en el cual se identificó como agente etiológico el Coxsackie A9 que estuvo circulando esos 2 años. Ya en 1992, el Coxsackievirus A9 fue desplazado por el Coxsackie B4 pero en 1993 volvió a circular. Esta circulación en "oletadas" es característica de los enterovirus (6). Al inicio de 1994 se observaron algunas primeras evidencias de positividad a Echovirus 30, dando lugar a un brote epidémico de MEV de gran difusión, y su circulación se mantuvo hasta fines de año. En Octubre de 1995 comenzó un incremento vertical y acelerado en la notificación de casos de MEV con respecto a similar periodo de 1994, detectándose que el agente causal fue el Coxsackievirus B5, el cual no circulaba desde 1976 (3).


La Tabla 2 refleja la positividad de las muestras de HF y LCR en cada sistema celular estudiado. Como ya mencionamos, en las HF se encontró el mayor número de aislamientos: 36 en Vero, 124 en PHuE-1.

<table>
<thead>
<tr>
<th>No. muestras</th>
<th>Vero</th>
<th>PHuE-1</th>
<th>Vero/PHuE-1</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>586</td>
<td>36</td>
<td>124</td>
<td>217(37,03)</td>
</tr>
<tr>
<td>LCR</td>
<td>108</td>
<td>0</td>
<td>8</td>
<td>8(7,4)</td>
</tr>
<tr>
<td>Total</td>
<td>694</td>
<td>36</td>
<td>132</td>
<td>225(32,42)</td>
</tr>
</tbody>
</table>

Fuente: Laboratorio de Enterovirus.
La Tabla 4 muestra la positividad de sueros paredos en casos de MEV frente a 13 enterovirus. De los 1.095 sueros pares investigados, fueron positivos a un solo virus 292, y 440 a más de un virus, para un total de 732 que representa el 66,84 % del total.

El porcentaje de positividad por serología (66,84 %) fue superior al detectado por aislamiento (32,42 %). En total, la positividad por aislamiento y serología sobrepasa el 80 %, lo que evidencia la importancia de los enterovirus como agentes causantes de MEV en nuestro medio, coincidiendo con lo reportado en muchas partes del mundo (13).

El hecho de que se hayan encontrado más sueros positivos a más de un virus puede deberse a que, ante una infección o reinfección, se produce una respuesta anamnésica a un virus relacionado antigenicamente o a reacciones cruzadas. Los sueros pares son difíciles de interpretar en el diagnóstico de enterovirus debido a la multiplicidad de serotipos, reacciones cruzadas y reacciones anamnésicas (6).

Entre 1990 y 1993 no se detectó ningún suero positivo a Echovirus 30; lo mismo sucedió desde 1990 a 1994 con el Coxackievirus B5, por lo cual, al parecer, había una población susceptible a estos virus, lo que pudo influir en que se desarrollaran los brotes de MEV por Echovirus 30 (1994) y Coxackievirus B5 (1995).

Miwa y Watanabe en 1990 (14) realizaron un estudio serológico en una epidemia de MEV en Japón, encontrándose un aumento significativo de Ac Nt contra 4 tipos de virus aislados y el 20 % de los pacientes tenían aumento en el título de 2 o más enterovirus. Durante otra epidemia de MEV por Echovirus 30, se realizó un estudio serológico encontrándose 51,9 % de positivos con la cepa prototipo y 34 % con la cepa aislada (15). En un estudio serológico hecho por Nt a 356 sueros pares de pacientes de MEV en Checoslovaquia, se en-

<table>
<thead>
<tr>
<th>Año</th>
<th>Tasa</th>
<th>Total de casos estudiados</th>
<th>Total de aislamientos</th>
<th>Enterovirus predominante</th>
<th>Otros enterovirus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>36,01</td>
<td>197</td>
<td>38 (19,28 %)</td>
<td>Cox A9</td>
<td>Cox A16, B1</td>
</tr>
<tr>
<td>1991</td>
<td>45,98</td>
<td>374</td>
<td>50 (13,36 %)</td>
<td>Cox A9</td>
<td>Echo 6, 7, 11, 14, 25</td>
</tr>
<tr>
<td>1992</td>
<td>36,64</td>
<td>421</td>
<td>8 (1,90 %)</td>
<td>Cox B4</td>
<td>Echo 15</td>
</tr>
<tr>
<td>1993</td>
<td>32,50</td>
<td>141</td>
<td>12 (8,5 %)</td>
<td>Cox A9</td>
<td>Echo 15, 21, 25</td>
</tr>
<tr>
<td>1994</td>
<td>85,62</td>
<td>255</td>
<td>95 (37,25 %)</td>
<td>Echo 30</td>
<td>Echo 6, Cox A9</td>
</tr>
<tr>
<td>1995</td>
<td>70,63</td>
<td>70</td>
<td>22 (31,42 %)</td>
<td>Cox B5</td>
<td>Cox B1, Echo 30, 32</td>
</tr>
</tbody>
</table>

*Por 100 000 habitantes.
EV: Enterovirus.
Fuente: Laboratorio de Enterovirus.

Tabla 3. Tasa de casos de MEV y circulación de enterovirus según los años 1990-1995.
contró seroconversión en 87 (24,2 %) (16).

En los 6 años de estudio de las MEV en Cuba podemos concluir que en el periodo de 1990-95 se encontraron 3 enterovirus causantes de brotes epidémicos: Coxsackievirus A9, Echovirus 30 y Coxsackievirus B5, correspondiendo en los casos de Echovirus 30 y Coxsackievirus B5 a elevadas tasas de incidencia. Además, se vincula por primera vez desde 1970 los Coxsackievirus A9 y Echovirus 30 como productores de MEV en Cuba.

<table>
<thead>
<tr>
<th>Año</th>
<th>SP Inv</th>
<th>Pos Inv</th>
<th>E₄</th>
<th>E₆</th>
<th>E₈</th>
<th>E₁₁</th>
<th>E₃₀</th>
<th>B₁</th>
<th>B₂</th>
<th>B₃</th>
<th>B₄</th>
<th>B₅</th>
<th>B₆</th>
<th>A₀</th>
<th>A₁₆</th>
<th>PosPOS</th>
<th>Tot (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>174</td>
<td>46</td>
<td>9</td>
<td>14</td>
<td>4</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>113</td>
<td>91,3</td>
</tr>
<tr>
<td>1991</td>
<td>279</td>
<td>79</td>
<td>6</td>
<td>33</td>
<td>8</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>12</td>
<td>143</td>
<td>79,5</td>
</tr>
<tr>
<td>1992</td>
<td>376</td>
<td>87</td>
<td>4</td>
<td>55</td>
<td>4</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>139</td>
<td>60,1</td>
</tr>
<tr>
<td>1993</td>
<td>44</td>
<td>9</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>24</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>185</td>
<td>59</td>
<td>1</td>
<td>44</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11</td>
<td>37,8</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>37</td>
<td>12</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>59,4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1095</td>
<td>292</td>
<td>20</td>
<td>153</td>
<td>17</td>
<td>41</td>
<td>6</td>
<td>1</td>
<td>11</td>
<td>14</td>
<td>9</td>
<td>4</td>
<td>15</td>
<td>1</td>
<td>440</td>
<td>66,8</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Laboratorio de Enterovirus.
*Posivos a más de un virus.
SP Inv: Sueros pares investigados.
E: Echovirus.
B: Coxsackie B.
A: Coxsackie A.