The World Health Organization (WHO) Requirements for the whole-cell pertussis vaccine describe the potency test in a very general manner because it varies from one laboratory to another; one of the reasons for that variation could be the mouse strain used, therefore every laboratory shall evaluate the best conditions for its performance. To be considered valid, the effective dose 50% (ED50) value shall be between the largest and the smallest immunizing doses and the regression do not show significant deviations from linearity. The optimal dose range is experimentally determined in each laboratory. For the establishment of this essay in our laboratory the OF-1 mouse strain was used. Different immunizing doses were inoculated to get a surviving response which had to fulfill a linear regression analysis for be considered appropriate. Ten assays were performed following the same methodology. Six resulted valid. The logarithmic transformation of the doses used and their survival percent showed a good linear regression ($R \geq 0.99$) in the range of immunizing doses containing 2; 0.4 and 0.08 International Units (IU). Eight lots of Diphtheria-Tetanus-Pertussis (DTP) vaccine were also evaluated to prove that the potency test worked well. All the assays were valid according to WHO requirements. The methodology described in the present paper was considered appropriate to evaluate in our laboratory the potency of the whole-cell pertussis component in DTP vaccines.

Key words: pertussis vaccine, pertussis, potency, OF-1 mouse
mayor que 18 g, donde la diferencia total en el grupo no debe diferir para un ensayo en más de 4 g; la inoculación es de 0.5 mL por vía intraperitoneal. Después de 14 días los animales se retan con una suspensión virioneta de Bordetella pertussis debidamente preparada y controlada para que contenga de 100 a 1000 dosis letales 50% (DL₅₀) con un volumen de inoculación de 0.03 mL y la vía es intracerebral. Los ratones se mantienen en observación durante 14 días más, durante los cuales se registran las muertes ocurridas y al final de ese tiempo se procede al cálculo de la potencia usando métodos estadísticos propios, que demuestran la linlidad de la respuesta de sobrevivencia de los animales en relación con las dosis de vacuna recibidas y además el paralelismo entre la respuesta de la vacuna en prueba con la del patrón. El método Probit es el más recomendado para estos fines (1, 2). El requisito mínimo para la vacuna en estudio es tener una potencia igual o superior a cuatro Unidades Internacionales (UI) de protección por dosis humana individual (0.5 mL) con un límite inferior para un intervalo de confianza de 95% igual a 2 UI/dosis; este requisito ha sido corroborado en varios ensayos clínicos (3).

Las diluciones inmunizantes deben encontrarse en un intervalo tal que los animales después de retados con el germen virulento presenten una respuesta gradual de sobrevivencia, donde se obtengan por cientos superiores e inferiores a 50, los cuales permitan realizar los cálculos correspondientes, basados en la determinación de la dosis eficaz 50% (DE₅₀), para los cuales es preciso que se puedan realizar transformaciones matemáticas apropiadas, de modo que la curva dosis-respuesta se ajuste a una regresión lineal. Este rango óptimo de diluciones se define experimentalmente en cada laboratorio.

En relación con los animales a utilizar, los documentos regulatorios de la OMS no proponen una cepa específica de ratón, sólo que deben ser animales sanos, susceptibles a la infección intracerebral por B. pertussis y capaces de dar una respuesta inmune adecuada, ya que se conoce que existen diferencias entre los laboratorios debidas en parte a los animales, como señala Pitman en un reporte al respecto (4). En estudios colaborativos donde se ha hecho uso de este ensayo, cada laboratorio lo ha efectuado de acuerdo con su metodología, la cual no contradice la establecida por OMS pero ha sido adaptada a las condiciones locales (5, 6).

En el continente americano, específicamente en los Estados Unidos (7), se usa la cepa de ratón N/NIH (SW) conocida también como NIH B X S, al igual que en México (Gallegos G. Laboratorio Nacional de Salud Pública. Comunicación personal, 1995) y Venezuela (Hurtado E. Instituto Nacional de Higiene “Rafael Rangel”. Comunicación personal, 1995), no así en Chile (Johnson E. Instituto de Salud pública. Comunicación personal, 1995), donde es C1-T; en Hungría se usaba la CFW (Csizer Z. Institu

crecido en medio de Bordet-Gengou, correspondiente a un segundo paso (en el mismo medio) del cultivo obtenido a partir del ámpula de la cepa iñoilizada. Estos 0,03 ml, constituyeron la dosis de reto, que contenía entre 100 y 1000 DL₅₀. Un grupo de animales controles fue inoculado también con esta dilución, de la cual se prepararon otras (1:50, 1:250 y 1:1250) para evaluar la DL₅₀, que se inocularon respectivamente a los tres grupos restantes de animales controles. El diluyente en todos los casos fue solución de clorhidrita de los RGS inmunes. Los ratones se observaron diariamente durante los 14 días posteriores al reto y se anotaron las inmunizaciones, y los que presentaron síntomas al final del ensayo se consideraron como muertos. Se calculó el porcentaje de sobrevivencia para cada dosis de vacuna. La DL₅₀ de la cepa se evaluó por el método de Reed-Muench (8). La DL₅₀ de la vacuna y sus límites para una desviación estándar (DE) se calcularon por el método de Wilson-Worcester (9). Para controlar las bacterias viables se sometieron placas de Bordet-Gengou con la dilución 10⁻¹² de la dilución de reto, 10⁻¹⁰ de 1:50, 10⁻⁷ de 1:250 y 10⁻⁵ de 1:1250, 3 placas por cada dilución con 0,1 ml en cada una; el inóculo se extendió con espátula para poder realizar el conteo de las colonias aisladas, 72 h después de incubarse a 35 °C. Se realizaron dos ensayos en días diferentes, siguiendo la misma metodología. Se siguió el criterio de la OMS (1) para decidir la validez de los mismos.

Para comprobar el funcionamiento de la metodología empleada. Se evaluó la potencia del componente pertussis de ocho lotes de vacuna DTP usando la metodología descrita, después de haber demostrado que las diluciones de la vacuna patrón empleadas con sus respectivas sobrevivencias de animales se ajustaban a una regresión lineal. Las diluciones de trabajo para las vacunas en estudio debían ser equivalentes a las del patrón. Para ello se tomó el criterio de que si la potencia mínima requerida para una vacuna final era 4 UI/dosis, las diluciones de las muestras debían ser 1:2; 1:10; 1:50 y 1:250. Estas se realizaron con el mismo diluyente descrito para el patrón.

Análisis de los resultados. Los resultados de los ensayos víales se sometieron a un análisis de regresión lineal (programa computarizado, Microsoft Excel), donde se relacionó la transformación logarítmica de las dosis inmunizantes (el valor de cada dosis multiplicado por 100 para eliminar números decimales) con sus respectivos por cientos de sobre-vivencia. Se obtuvo la ecuación de la recta y el coeficiente de regresión (R) para cada ensayo. La potencia de los lotes de vacuna DTP evaluados se calculó mediante el método Probit (2).

Resultados y Discusión

De los diez ensayos realizados para establecer el rango óptimo de diluciones, cuatro no cumplieron con el requisito de la dosis de reto (100-1000 DL₅₀), debido a problemas iniciales con el ajuste de la suspensión virulenta, los cuales se resolvieron satisfactoriamente, de modo que los otros seis fueron válidos (Tabla 1). En todos los casos se obtuvo un ajuste apropiado a una regresión lineal, ya que el valor de R fue siempre mayor o igual que 0,99.

La Figura 1 muestra las rectas de regresión correspondientes a cada ensayo. Se observaron sólo cinco líneas porque hay una superpuesta, debido a que se obtuvieron los mismos resultados en los ensayos 2 y 5.

Figura 1. Rectas de regresión correspondientes a los ensayos de potencia de la vacuna antipertusis usando ratones OF-1.

Tabla 1. Resultados de ensayos de potencia de la Vacuna Pertussis Patrón usando la Cepa de Ratón OF-1.

<table>
<thead>
<tr>
<th>Ensayo No.</th>
<th>Dosis inmunizantes (UI/ratón)</th>
<th>Sobrevivientes en las tres dosis (%)</th>
<th>DE₅₀ (UI/ratón)</th>
<th>Ecuación de la recta de regresión</th>
<th>R</th>
<th>Límites para una desviación estándar* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 - 0,4 - 0,08</td>
<td>100-62,5-25</td>
<td>0,210</td>
<td>Y = 53,57X-23,21</td>
<td>1,0000</td>
<td>75 y 134</td>
</tr>
<tr>
<td>2</td>
<td>1 - 0,4 - 0,08</td>
<td>100-68,5-43,7</td>
<td>0,122</td>
<td>Y = 40,21X+6,39</td>
<td>0,9906</td>
<td>68 y 147</td>
</tr>
<tr>
<td>3</td>
<td>2 - 0,4 - 0,08</td>
<td>87,5-50-18,7</td>
<td>0,357</td>
<td>Y = 49,14X+26,6</td>
<td>0,9946</td>
<td>72 y 139</td>
</tr>
<tr>
<td>4</td>
<td>2 - 0,4 - 0,08</td>
<td>93,7-62,5-31,25</td>
<td>0,197</td>
<td>Y = 44,61X-8,89</td>
<td>1,0000</td>
<td>70 y 143</td>
</tr>
<tr>
<td>5</td>
<td>1 - 0,4 - 0,08</td>
<td>100-68,5-43,7</td>
<td>0,122</td>
<td>Y = 40,21X+6,39</td>
<td>0,9906</td>
<td>68 y 147</td>
</tr>
<tr>
<td>6</td>
<td>2 - 0,4 - 0,08</td>
<td>100-55-18,7</td>
<td>0,263</td>
<td>Y = 58,07X-35,01</td>
<td>0,9924</td>
<td>77 y 131</td>
</tr>
</tbody>
</table>

* Límites máximos permitidos: 64 y 156%.
En la Tabla 1 se muestran los límites (en por ciento) de la DE\textsubscript{50} para una DE, obtenidos por el método de Wilson-Worcester, los cuales no son requisito de la OMS pero sí son de uso común en el continente americano (10). En todos los casos éstos se mantuvieron dentro de los límites máximos permitidos.

Aunque de los requisitos de la OMS (1) se deduce que el sexo no debe influir en los resultados y que se pueden usar animales de un sexo o de otro, o de ambos, pero reparados por igual en el grupo, se decidió usar preferentemente las hembras, que fueron menos agresivas. Como el ensayo tiene una duración de 28 días, los ratones alcanzan gran desarrollo y se observó que cuando eran muchos se peleaban frecuentemente, lo cual provocaba estados de tensión en el grupo, que podrían influir negativamente en los resultados. En los requisitos de Estados Unidos (7) para el ensayo de potencia de la vacuna antipertussis se especifica el uso de ratones hembras.

Los resultados obtenidos demostraron que la cepa de ratón OF-1 (CENPALAB) respondió adecuadamente en el ensayo de potencia de la vacuna antipertussis con una respuesta lineal en el intervalo de dosis inmunizantes con un contenido de 2; 0,4 y 0,08 UI y que la metodología empleada resultó ser apropiada para la evaluación de la potencia de vacunas con componente pertussis pues, como se puede observar en la Tabla 2, el rango de diluciones usado fue adecuado para ensayar productos con potencias altas y bajas. En el caso de los lotes experimentales nacionales la variabilidad observada era esperada, ya que se correspondían con diferentes variantes de formulación y en relación con los de importación, éstos provenían de diferentes casas comerciales. Hubo dos de ellos que no cumplieron el requisito mínimo de potencia (4 UI/dosis). La causa podría estar relacionada a faltos en la cadena de frío durante su transporte o almacenamiento, pero esto no pudo ser comprobado. Fue de gran utilidad la cuarta dilución (1:250) equivalente a 0,016 UI/dosis) en el caso de la muestra número cinco, ya que al ser tan potente, los por cientos de sobrevivencia mayores y menores de 50 se obtuvieron con las diluciones 1:10; 1:50 y 1:250 y fueron las escogidas para realizar los cálculos de la potencia. Se implementó por tanto el uso de cuatro diluciones como garantía de éxito del ensayo para el caso de vacunas con potencias mucho mayores que el requisito mínimo. Esto es importante si se tiene en cuenta que se necesita de un mes para obtener el resultado de la prueba y que las demoras debido a ensayos no válidos son siempre muy perjudiciales para la producción.

La metodología empleada para el establecimiento del ensayo de potencia se consideró apropiada y se implementó en el laboratorio para realizar los análisis de rutina de las vacunas con componente pertussis de células completas.

Agradecimientos

Los autores agradecemos la gentileza de las doctoras Ofelia Saldate y Guadalupe Gallegos del Laboratorio Nacional de Salud Pública de México, D.F. por facilitarnos la Vacuna Antipertussis Patrón Nacional Lote VP-01 para la ejecución de este trabajo.

Tabla 2. Resultados de ensayos de potencia realizados al componente pertussis de diferentes muestras de vacunas DTP siguiendo la metodología descrita.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Potencia (UI/dosis)</th>
<th>Potencia límite inferior (UI/dosis)</th>
<th>Linealidad</th>
<th>Paralelismo</th>
<th>Cumplimiento del requisito OMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5,40</td>
<td>2,20</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>2</td>
<td>3,20</td>
<td>1,40</td>
<td>Sí</td>
<td>Sí</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>1,21</td>
<td>0,39</td>
<td>Sí</td>
<td>Sí</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>8,50</td>
<td>3,90</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>5</td>
<td>24,40</td>
<td>11,24</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>6</td>
<td>10,70</td>
<td>4,40</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>7</td>
<td>12,40</td>
<td>6,00</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>8</td>
<td>12,12</td>
<td>5,22</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
</tr>
</tbody>
</table>

Los primeros cuatro muestras corresponden a lotes de importación; las restantes son lotes experimentales nacionales.
