Hepatic stellate cells are a major component of liver fibrosis and a target for the treatment of chronic liver disease

Alfonso Leija, Jorge Reyes, Lourdes Rodriguez

Facultad de Farmacia, Universidad Autónoma del Estado de Morelos
Av. Universidad 1001 Colonia Chamilpa, Cuernavaca, Morelos, México
E-mail: mlrodrig1@yahoo.com.mx

ABSTRACT

Fibrosis, defined as the excessive deposition of an extracellular matrix in an organ, is the main complication of chronic liver damage. Its endpoint is cirrhosis, which is responsible for significant morbidity and mortality. The accumulation of the extracellular matrix observed in fibrosis and cirrhosis is due to the activation of hepatic stellate cells. It is now widely accepted that various types of lesions (e.g., lesions caused by alcohol abuse and viral hepatitis) lead to liver fibrosis. The biological and biochemical characterization of hepatic stellate cells is thus essential (1) to understand the mechanisms underlying the progressive development of excessive scarring in the liver, and (2) to develop new treatments for specifically and efficiently targeting cells responsible for the development of fibrosis or cirrhosis. Here, we describe many of the molecular events that occur following hepatic stellate cell activation and its role in fibrogenesis, as well as providing a review of therapeutic strategies for treating this disease.

Key words: hepatic stellate cells, liver fibrosis, cytokines, growth factors

Introduction

The remarkable scientific advances in recent years on the molecular mechanisms involved in fibrogenesis have had little effect on new drugs for chronic liver diseases.

Liver fibrosis and its end stage, cirrhosis, are enormous healthcare problems worldwide. When fibrosis progresses to cirrhosis, life-threatening complications associated with liver disease occur, including variceal bleeding, formation of ascites, and hepatorenal syndrome. Liver fibrosis and cirrhosis are associated with an increased risk of developing hepatocellular carcinoma [1-3]. These complications create a substantial burden on healthcare resources and are expected to increase dramatically in the near future. The success of liver transplants and advances in the radiological and endoscopic management of portal hypertension have improved longevity and the quality of life of patients with liver cirrhosis. However, these interventions also highlight our current inability to alter the underlying fibrotic process in patients with liver disease [4-7].

Fibrosis is the liver’s scarring response to an injury that occurs in most chronic inflammatory liver diseases. Liver fibrogenesis was traditionally considered a «passive» and irreversible process, due to the collapse of the hepatic parenchyma and its substitution by a collagen-rich tissue [8-9]. However, a number of intensive clinical and experimental observations during the past 20 years indicate that it is a dynamic process of tissue repair that develops after repeated liver injury [10,11]. The onset of liver fibrosis is usually insidious, and most of the related morbidity and mortality occur after developing cirrhosis [12]. In most patients, progression to cirrhosis takes 15-20 years.

The role of Hepatic Stellate Cells in the Liver

Hepatic stellate cells (HSCs), formerly known as Ito cells, fat storing cells, or lipocytes, have been identified as the main extracellular matrix (ECM) producers in the injured liver. HSCs are located between parenchymal cell plates and endothelial linings and have different important functions: (1) retinoid storage and homeostasis; (2) remodeling of ECM by production of both components of ECM and matrix metalloproteinases (MMPs); (3) production of growth factors and cytokines; and (4) contraction and dilation of sinusoidal lumen in response to endothelin, angiotsin, or prostaglandins [13-17]. It

is well known that HSCs are involved in the development and regeneration of liver tissue, reorganization of hepatic ECM, development of hepatic fibrosis, and cancer cell invasiveness [18-21].

HSCs mainly exhibit two phenotypes: the «quiescent» state and the «activated» or «trans-differentiated» state. Cytoplasmic lipid droplets containing retinyl esters and long cytoplasmic processes with fine branching are characteristic of quiescent HSCs, as seen in normal liver tissue. In their activated state, HSCs lack the lipid droplets and long processes and display proliferative and fibrogenic myofibroblast-like phenotypes [22, 23]. The activation or trans-differentiation process of HSCs is regulated by paracrine and autocrine loops of growth factors in association with fibrosis in pathological conditions such as liver injury and fibrosis [24-26]. HSC activation is accompanied by changes in gene expression and phenotype, and finally leads to enhanced cytokine expression and responsiveness, and the accelerated production of ECM components, MMPs, and tissue inhibitors of metalloproteinase (TIMPs) to promote remodeling [2, 27, 28]. The mechanisms mediating activation of HSCs are not completely clear. However, it is well known that there is a complex interplay among different hepatic cell types during hepatic fibrogenesis. Parenchymal cells (hepatocytes) and non-parenchymal cells (HSCs, endothelial sinusoidal cells, Kupffer cells, and biliary cells), as well as inflammatory cells, are involved in this process [11].

Cellular Interactions Involved in the Activation of HSCs

The cellular basis of hepatic fibrogenesis has recently been outlined. Hepatic fibrosis is the result of the wound-healing response of liver cells to chronic or iterative injury. After an acute liver injury (e.g., viral hepatitis), parenchymal cells regenerate and replace the necrotic or apoptotic cells. This process is associated with an inflammatory response and a limited deposition of ECM. The first lines of defense are provided by NK (natural killer) and NKT cells, of which populations are relatively increased in the liver compared to the periphery. These cells are activated in the liver, where the expression of interferon α (IFN-α) and IFN-inducible genes is extremely high during the early phase of the hepatitis virus infection. Activated NK and NKT cells secrete IFN-γ, which inhibits the replication of HCV through a non-cytolytic process. During HBV infection, those cells contribute significantly to the suppression of viral replication. Dendritic cells (DCs) or resident macrophages in the liver are capable of taking up viral antigens, and processing and presenting them to other immune cells. DCs develop into a mature phenotype and migrate to lymphoid tissues, where they stimulate effectors, including T cells and B cells. Following the encounter of DCs with other cells, DCs secrete various cytokines (interleukin-12 (IL-12), tumor necrosis factor α (TNF-α), IFN-α, and IL-10) instructing or regulating the functions of the adjacent cells. Helper T cells have an immunoregulatory function mediated by the secretion of cytokines that support either cytotoxic T lymphocyte (CTLs) generation (Th1 with secretion of IL-2, IFN-γ, and TNF-α) or B cell function and antibody production (Th2 with secretion of IL-4, IL-5, IL-10, and IL-13). There are two plausible mechanisms for the CTL-mediated HCV clearance from the liver: by inducing apoptosis in infected hepatocytes (cytolytic mechanism) or by releasing IFN-γ to suppress HCV replication (non-cytolytic mechanism) (Figure 1) [29-31]. If the hepatic injury persists, then eventually liver regeneration fails, and hepatocytes are substituted by abundant ECM, including fibrillar collagen and other matrix proteins that disrupt the architecture of the liver [32, 33]. The distribution of the fibrous material depends on

Figure 1. Immunological response during viral hepatitis. CTL, cytotoxic T lymphocyte; DC, dendritic cell; HCV, hepatitis C virus; NK, natural killer cell; Th, helper T cell.
the origin of the liver injury. In chronic viral hepatitis and chronic cholestatic disorders, the fibrotic tissue is initially located around portal tracts, while in alcohol-induced liver disease it is located in pericentral and perisinusoidal areas [34, 35]. As fibrotic liver diseases advance, there is a progression from collagen bands to bridging fibrosis and finally to cirrhosis.

Hepatocytes are targets for a number of hepatotoxic agents, including hepatitis viruses, alcohol metabolites, and bile acids [36]. Moreover, the apoptosis of damaged hepatocytes releases fibrogenic substances and stimulates the immune response leading to infiltration by inflammatory cells [37, 38]. Inflammatory cells found in the areas of hepatocellular necrosis, either lymphocytes or polymorphonuclear cells, attract fibrogenic cell types such as HSCs. The damage of hepatocytes and the inflammatory cells induce the release of chemical mediators that influence HSCs and induce their activation [39] (Figure 2). On the other hand, activated HSCs also secrete inflammatory chemokines and express cell adhesion molecules that activate leukocytes. Therefore, a vicious circle in which inflammatory and fibrogenic cells stimulate each other is likely to occur. Kupffer cells are resident macrophages that play a major role in liver inflammation by releasing reactive oxygen species and cytokines [31, 40, 41].

Production of HSCs and Regulation by Growth Factors and Cytokines

In most tissues, including the liver, constitutive production of cytokines is absent or low. However, as physiologic and pathologic stimuli activate cells, the production of these autocrine, paracrine, and endocrine effector molecules increases, and they in turn orchestrate the tissue’s response to the stimulus [44, 45].

There is increasing evidence that certain cytokines play a major role in inflammatory liver diseases and liver tissue repair. To date, it is well known that cytokines, growth factors, and other soluble mediators are involved in this complex mechanism that

orchestrates the wound-healing response in the liver [46]. These mediators are either present locally and stored in an inactive form bound to the ECM, or are produced by different cell types during the acute phase of aggression as a part of the inflammatory reaction.

At least three cytokines from different cytokine families, namely the pro-inflammatory molecule TNF-α and the anti-inflammatory cytokine IL-10, have been found to be key factors in various aspects of liver diseases. This does not mean that other cytokines are not important in fibrogenesis. TNF-α production is one of the earliest events in many types of liver injury, triggering the production of other cytokines that together recruit inflammatory cells, kill hepatocytes, and initiate a hepatic healing response that includes fibrogenesis [47].

IL-10 is secreted by several cell populations including T-helper cells, monocytes and macrophages, DCs, B cells, and keratinocytes. This cytokine suppresses inflammation through several mechanisms, including the reduction of HLA class II expression, decreasing T-cell secretion of IL-2, and diminishing the production of IL-1α, IL-1β, TNF-α, and IL-8 by activated monocytes and macrophages [26, 45, 46, 48].

The transforming growth factor-β1 (TGF-β1) and the platelet-derived growth factor (PDGF) are fibrogenic and proliferative cytokines, respectively, for HSCs. TGF-β1 was found to be increased in experimental and human hepatic fibrosis, and TGF-β1 induces the production of ECM by HSCs [49, 50]. TGF-β1 is produced by hepatocytes, Kupffer cells, platelets, and sinusoidal cells. Hepatic injury is associated with the increased production of PDGF by platelets and up regulation of the PDGF receptor in HSCs [51-53].

Secretion of cytokines by resident or incoming lymphocytes in the context of the inflammatory response also contributes to the regulation of fibrogenesis. According to their cytokine profiles, CD4 T cells can promote either cell-mediated immunity, through the secretion of IFN-γ, IL-2, or TNF (Th1 cells), or humoral immunity (Th2 cells) through IL4, IL5, or IL13. Experimental evidence suggests that different Th profiles might favor or limit fibrosis [54, 55].

HSCs are also important in the synthesis of several soluble factors needed for the establishment of paracrine and autocrine loops within the liver. They synthesize a broad spectrum of cytokines and growth factor-binding proteins including the epidermal growth factor, insulin-like growth factor-I and -II, insulin-like growth factor-binding proteins, interleukins, macrophage colony-stimulating factor (M-CSF), latent TGF-β-binding proteins, CTGF, chemokines, and many substances and proteins controlling the activity of these factors and allowing them to interact with all hepatic and non hepatic cell types [13, 15, 24, 56]. Furthermore, different components of the plasminogen activation system and different metalloproteases were identified in HSCs [57-59], again demonstrating that the biochemical functions of this hepatic cell fraction are only partially understood and are not solely restricted to the liver.

HSCs also contribute to the formation of inflammatory granuloma with the synthesis and extracellular release of polymorphonuclear and macrophage–monocyte chemotactic receptor and differentiation factors such as monocyte chemotactic protein-1 and M-CSF M-CSF, a member of the CC class of chemokines, which actively participates in the influx of peripheral monocytes and their differentiation to phagocytic cells at the site of the injury [60]. Moreover, activated human HSCs express receptors for a number of chemokines; these cytokines activate various intracellular pathways involved in the inflammatory reaction [45, 61]. These mediators compete with anti-inflammatory cytokines such as IL-10, which are also produced by HSCs (62).

The pathways for perpetuating the activated HSC phenotype include the acquisition and maintenance of new functions such as proliferation, release of pro-inflammatory cytokines and chemokines, matrix degradation, and, of course, fibrogenesis. Most of these new functions are sustained by an autocrine loop characterized by the production of several major mediators and the enhancement of cell response to these factors through both the up-regulation of their own membrane receptor and the enhancement of intracellular signaling.

Hepatic Stellate Cells as the Major Mediators of Fibrosis

HSCs play a crucial role in offense mechanisms, regeneration, and fibrosis in the hepatic tissue. They also participate in the maintenance of the ECM and of the space of Disse. HSCs acquire a particularly important function when the liver is submitted to a harmful process. HSCs receive numerous paracrine stimuli provided by harmed hepatocytes, endothelial cells, Kupffer cells, and ECM altered by the aggression [20]. Subsequently, HSCs become more responsive to cytokines. HSCs begin to produce cytokines that attract and stimulate themselves and leukocytes (autocrine and paracrine mechanisms), they start to proliferate, lose their vitamin A deposits, acquire contractile capacity and the synthesis of α-smooth muscle actin (α-SMA) and large amounts of the main components of the ECM, including collagen types I, III, and IV, fibronectin, laminin, and proteoglycans (Figure 3) [17, 22].

Collagen types I and III are the main framework of the so-called «fibrillar matrix», which gradually substrate the basal membrane-like structures found along the sinusoids and in between the hepatocellular plates. The space of Disse, where HSCs are located, is a virtual space constituted by an ECM network composed of type IV collagen, associated with non-collagenous components, such as laminin. In advanced active fibrosis, the deposition of ECM is dense enough to resemble a vascular basement membrane, an appearance termed «capillarization of the sinusoids». The large majority of collagen types III and IV and laminin are synthesized by HSCs and sinusoidal endothelial cells, whereas all cell types synthesize small amounts of collagen type I [59].

During active hepato-fibrogenesis, however, HSCs become the major ECM-producing cell type, with a
predominant production of collagen type I [29]. The net result of injury is fibrogenesis caused by HSC activation and this is typically viewed as a lesion with progressive accumulation of excess ECM. It is clear that fibrogenesis involves the dynamic interplay of matrix synthesis and degradation. Under normal circumstances, there is a balance between matrix synthesis and degradation. In contrast, under abnormal circumstances, the balance is disrupted and this leads to fibrosis and cirrhosis. The degradation portion of the remodeling process is coordinated by MMPs and TIMPs [63, 64].

It is unclear what happens to HSCs during fibrosis and cirrhosis resolution. There is a decrease in the number of activated HSCs as fibrosis resolves, but it is uncertain if HSCs return to a quiescent state or undergo apoptosis. Cell culture has demonstrated that the HSCs can revert to a quiescent cell type, but it is unknown if this occurs in vivo.

Therapeutic Approaches to Liver Fibrosis

Several tools may be potentially effective in the treatment of fibrosis. They may target any of the following biological mechanisms: (1) removal of the initial fibrotic stimulus; (2) inhibition of HSC activation or induction of apoptosis; (3) targeting liver inflammation; (4) removal of excess fibrous tissue; (5) stimulation of liver regeneration; and (6) removal of the initial fibrotic stimulus.

Removing the causal agent is presumably the most efficient way to prevent liver fibrosis progression and stimulate regression. In chronic hepatitis C, several randomized clinical trials of patients with chronic HCV infection treated either with IFN-α alone or combined with ribavirin have shown stabilization or even a partial decrease in liver fibrosis in repeated liver biopsies, mainly when there is a virological response [65, 66]. The decrease in the inflammatory reaction, which is often observed by antiviral treatment even in the absence of virus eradication, may play a major role, but a direct anti fibrotic effect of IFN is also supported by *in vitro* and experimental evidence [67, 68].

Inhibition of HSC Activation

Owing to the new functions acquired by activated HSCs, substances that inhibit either activation or accumulation of HSCs might be of major importance in attenuating fibrogenic response. Because of the complexity and multiplicity of pathways involved or associated with initial phases of HSC activation and the maintenance phase, there are multiple therapeutic targets. Different strategies for targeting these pathways have been developed, such as neutralizing inflammation.
anti-TGF-β antibodies, soluble or truncated receptors [69]. These strategies have been shown to be efficient in preventing fibrosis in different rat models of liver fibrogenesis [70, 71].

Different therapeutic options targeting the proliferation of activated HSCs have also been developed; they act either by blocking PDGF receptors or through intracellular pathways required for cell proliferation. It has been shown that the tyrosine kinase inhibitor specific for PDGF-R reduces the proliferative response of HSCs [72]. Similarly, IFN-β and IFN-γ, but not IFN-α, inhibits rat HSC proliferation [73].

Regardless of the etiology of the disease, antifibrotic therapy may be targeted at inducing the apoptosis of HSCs, increasing the activity of MMP, or eliminating profibrogenic signals. Thus, activation of the death receptor-mediated pathway results in HSC apoptosis. However, the Fas receptor is expressed ubiquitously on HSCs and hepatocytes and causes apoptosis of both cell types [74]. Several cytokines can induce HSC apoptosis. For example, IFN-γ successfully blocks HSC proliferation and induces HSC apoptosis [75]. Tumor necrosis factor-α also has an anti-proliferative effect on HSCs and induces HSC apoptosis in the presence of cycloheximide, an inhibitor of protein synthesis [47].

Several substances with antioxidant properties have been tested, with contrasting results. They may protect or restore the defenses against oxidation, or scavenge free radicals such as vitamin E (α-tocopherol), resveratrol, silymarin, and dimethylsulphoxide. Most have shown conclusive effects in various in vitro and experimental models of liver fibrogenesis (CCl₄-induced fibrosis or biliary duct-ligated models) (76).

Targeting Liver Inflammation

The association between liver inflammation and fibrosis is very strong in chronic hepatitis. Promising experimental results suggested that IL-10, an anti-inflammatory and antifibrotic cytokine synthesized by activated HSCs, may be efficient at reversing fibrosis in experimental models mainly by down-regulating the Th1 proinflammatory response (61, 62).

Destruction of Excess Fibrous Tissue

It has recently been suggested that the modulation of MMP and TIMP activity is an efficient tool for liver fibrosis regression, and there are several potential targets for interrupting or stimulating this pathway, since MMPs are regulated mainly at a post-translational level (77, 78). Collagen biosynthesis involves several post-translational modifications leading to the production of highly stable cross-linked molecules. Prolyl-4-hydroxylase is critical in this process since it catalyses the synthesis of the hydroxyproline residues that are critical for the stability of the triple helix collagen. They have shown striking efficacy in animal models by decreasing the amount of collagen accumulation. They may also combine with other mechanisms such as the inhibition of HSC activation (79).

Since fibrogenesis is a slow process requiring years or decades, the assessment of changes during short time intervals is problematic. Furthermore, prospective human clinical trials of potential anti-fibrotic agents may be costly because of their length.

Conclusions

Significant progress has been made in understanding the role of HSCs in fibrogenesis, which has led to many potential therapies for improving fibrosis. It is clear that HSC trans-differentiation in vivo is a complex and multistep process influenced by many factors. The mechanisms whereby these factors affect fibrosis in vivo are not well understood but are under active research in many laboratories.

Received in december, 2006 Accepted for publication in april, 2007.